Effects of Ouabain in Ehrlich Tumor Development in vitro and in vivo

Amanda Costa Ayres Salmeron, Maria Beatriz Calado, Mateus da Silva Matias Antunes, Gabriel Rodrigues Da Silva, Deyse Cristina Madruga Carvalho, Beatriz Fernandes de Souza, Márcia Regina Piuvezam, Sandra Rodrigues-Mascarenhas

Abstract


Ouabain (OUA) is a cardiotonic steroid with an immunomodulatory and anti-inflammatory role in different experimental models. Currently, the potential antineoplastic effect of OUA has been studied, however, research is needed to better understand OUA role during tumor development. Therefore, our aim was to investigate the OUA effects on Ehrlich tumor (ET) development in vitro and in vivo. To evaluate the cytotoxic effects of OUA on ET in vitro the cells were incubated with different concentrations of OUA during 24h and 48h and our results showed that only the [1000 ?M] decreased the number and viability of ET cells in the two analyzed times. To study the OUA effects on ET in vivo, Swiss mice were pretreated with 0.56 mg/kg of OUA intraperitoneally (i.p.) for three consecutive days. To develop ET in the solid form, one hour after the last day of pretreatment, ET cells were inoculated subcutaneously into the footpad and the animals were monitored for 13 days. To develop the ascitic form, ET cells were inoculated (i.p.) and the animals were monitored for 3 days. OUA was able to reduce the thickness and weight of the tumor paw, in addition to reduce the weight of the popliteal lymph node. In the ascitic tumor, OUA reduced the number of neutrophils and macrophages and increased the lymphocytes in the peritoneum. Thus, we demonstrated that OUA affects ET development both in vitro and in vivo. Our results suggest a new perspective in the anti-inflammatory, immunomodulatory and a possible anti-cancer role of ouabain and brings new concepts about the pathophysiological role of this substance.

Keywords


Ehrlich tumor; inflammatory microenvironment; ouabain; solid tumor; tumor development

Full Text:

PDF

References


Agrawal, A., Choudhary, D., Upreti, M., Rath, P. C., & Kale, R. K. (2001). Radiation induced oxidative stress: I. Studies in Ehrlich solid tumor in mice. Molecular and Cellular Biochemistry, 223(1–2), 71–80. https://doi.org/10.1023/A:1017900810837

Aizman, O., Uhlén, P., Lal, M., Brismar, H., & Aperia, A. (2001). Ouabain, a steroid hormone that signals with slow calcium oscillations. Proceedings of the National Academy of Sciences of the United States of America, 98(23), 13420–13424. https://doi.org/10.1073/pnas.221315298

Akimova, O. A., Tverskoi, A. M., Smolyaninova, L. V., Mongin, A. A., Lopina, O. D., La, J., Dulin, N. O., & Orlov, S. N. (2015). Critical role of the ?1-Na+, K+-ATPase subunit in insensitivity of rodent cells to cytotoxic action of ouabain. Apoptosis, 20(9), 1200–1210. https://doi.org/10.1007/s10495-015-1144-y

Arneth, B. (2019). Tumor microenvironment. Medicina, 56(15), 1–21. https://doi.org/10.1002/jcb.21320

Bahr, H. I., Toraih, E. A., Mohammed, E. A., Mohammad, H. M. F., Ali, E. A. I., & Zaitone, S. A. (2015). Chemopreventive effect of leflunomide against Ehrlich’s solid tumor grown in mice: Effect on EGF and EGFR expression and tumor proliferation. Life Sciences, 141, 193–201. https://doi.org/10.1016/j.lfs.2015.10.003

Blaustein, M. P. (1993). Physiological effects of endogenous ouabain: Control of intracellular Ca2+ stores and cell responsiveness. American Journal of Physiology - Cell Physiology, 264(6 33-6). https://doi.org/10.1152/ajpcell.1993.264.6.c1367

Bortner, C. D., Hughes, F. M., & Cidlowski, J. A. (1997). A primary role for K+ and Na+ efflux in the activation of apoptosis. Journal of Biological Chemistry, 272(51), 32436–32442. https://doi.org/10.1074/jbc.272.51.32436

Brozovic, G., Orsolic, N., Knezevic, F., Knezevic, A. H., Benkovic, V., Sakic, K., Hrgovic, Z., Bendelja, K., & Fassbender, W. J. (2009). Genotoxicity and cytotoxicity of cisplatin treatment combined with anaesthetics on EAT cells in vivo. Onkologie, 32(6), 337–343. https://doi.org/10.1159/000218066

Cavalcante-Silva, L. H. A., Lima, É. de A., Carvalho, D. C. M., de Sales-Neto, J. M., Alves, A. K. d. A., Galvão, J. G. F. M., da Silva, J. S. d. F., & Rodrigues-Mascarenhas, S. (2017). Much more than a cardiotonic steroid: Modulation of inflammation by ouabain. Frontiers in Physiology, 8(NOV), 1–8. https://doi.org/10.3389/fphys.2017.00895

Chang, Y. M., Shih, Y. L., Chen, C. P., Liu, K. L., Lee, M. H., Lee, M. Z., Hou, H. T., Huang, H. C., Lu, H. F., Peng, S. F., Chen, K. W., Yeh, M. Y., & Chung, J. G. (2019). Ouabain induces apoptotic cell death in human prostate DU 145 cancer cells through DNA damage and TRAIL pathways. Environmental Toxicology, 34(12), 1329–1339. https://doi.org/10.1002/tox.22834

Chou, W. H., Liu, K. L., Shih, Y. L., Chuang, Y. Y., Chou, J., Lu, H. F., Jair, H. W., Lee, M. Z., Au, M. K., & Chung, J. G. (2018). Ouabain induces apoptotic cell death through caspase- and mitochondria-dependent pathways in human osteosarcoma U-2 OS cells. Anticancer Research, 38(1), 169–178. https://doi.org/10.21873/anticanres.12205

Coffelt, S. B., Kersten, K., Doornebal, C. W., Weiden, J., Vrijland, K., Hau, C. S., Verstegen, N. J. M., Ciampricotti, M., Hawinkels, L. J. A. C., Jonkers, J., & De Visser, K. E. (2015). IL-17-producing ?? T cells and neutrophils conspire to promote breast cancer metastasis. Nature, 522(7556), 345–348. https://doi.org/10.1038/nature14282

da Mota, M. F., de Carvalho, F. S., de Ávila, R. I., de Ávila, P. H. M., Cortez, A. P., Menegatti, R., Sabino, J. R., dos Santos, T. R. M., Gomes, S. A., da Cunha, L. C., & Valadares, M. C. (2018). LQFM030 reduced Ehrlich ascites tumor cell proliferation and VEGF levels. Life Sciences, 201, 1–8. https://doi.org/10.1016/j.lfs.2017.12.029

De Visser, K. E., Eichten, A., & Coussens, L. M. (2006). Paradoxical roles of the immune system during cancer development. Nature Reviews Cancer, 6(1), 24–37. https://doi.org/10.1038/nrc1782

Diakos, C. I., Charles, K. A., McMillan, D. C., & Clarke, S. J. (2014). Cancer-related inflammation and treatment effectiveness. The Lancet Oncology, 15(11), e493–e503. https://doi.org/10.1016/S1470-2045(14)70263-3

Fernandes, P. D., Guerra, F. S., Sales, N. M., Sardella, T. B., Jancar, S., & Neves, J. S. (2015). Characterization of the inflammatory response during Ehrlich ascitic tumor development. Journal of Pharmacological and Toxicological Methods, 71, 83–89. https://doi.org/10.1016/j.vascn.2014.09.001

Fontana, J. M., Burlaka, I., Khodus, G., Brismar, H., & Aperia, A. (2013). Calcium oscillations triggered by cardiotonic steroids. FEBS Journal, 280(21), 5450–5455. https://doi.org/10.1111/febs.12448

Galvão, J. G. F. M., Cavalcante-Silva, L. H. A., Carvalho, D. C. M., Ferreira, L. K. D. P., Monteiro, T. M., Alves, A. F., Ferreira, L. A. M. P., Gadelha, F. A. A. F., Piuvezam, M. R., & Rodrigues-Mascarenhas, S. (2017). Ouabain attenuates ovalbumin-induced airway inflammation. Inflammation Research, 66(12), 1117–1130. https://doi.org/10.1007/s00011-017-1092-9

Giese, M. A., Hind, L. E., & Huttenlocher, A. (2019). Neutrophil plasticity in the tumor microenvironment. Blood, 133(20), 2159–2167. https://doi.org/10.1182/blood-2018-11-844548

Goto et al. (1992). Physiology and pharmacology of endogenous digitalis-like factors. Pharmacol Rev, 44(44), 377–399.

Grada, A. A., & Phillips, T. J. (2017). Lymphedema: Pathophysiology and clinical manifestations. Journal of the American Academy of Dermatology, 77(6), 1009–1020. https://doi.org/10.1016/j.jaad.2017.03.022

Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: The next generation. Cell, 144(5), 646–674. https://doi.org/10.1016/j.cell.2011.02.013

Havelek, R., Muthna, D., Tomsik, P., Kralovec, K., Seifrtova, M., Cahlikova, L., Hostalkova, A., Safratova, M., Perwein, M., Cermakova, E., & Rezacova, M. (2017). Anticancer potential of Amaryllidaceae alkaloids evaluated by screening with a panel of human cells, real-time cellular analysis and Ehrlich tumor-bearing mice. Chemico-Biological Interactions, 275, 121–132. https://doi.org/10.1016/j.cbi.2017.07.018

Jacob, P. L., Leite, J. A., Alves, A. K. A., Rodrigues, Y. K. S., Amorim, F. M., Néris, P. L. N., Oliveira, M. R., & Rodrigues-Mascarenhas, S. (2013). Immunomodulatory activity of ouabain in Leishmania leishmania amazonensis-infected Swiss mice. Parasitology Research, 112(3), 1313–1321. https://doi.org/10.1007/s00436-012-3146-9

Johansson, S., Lindholm, P., Gullbo, J., Larsson, R., Bohlin, L., & Claeson, P. (2001). Cytotoxicity of digitoxin and related cardiac glycosides in human tumor cells. Anti-Cancer Drugs, 12(5), 475–483. https://doi.org/10.1097/00001813-200106000-00009

Kimiz-Gebologlu, I., Gulce-Iz, S., & Biray-Avci, C. (2018). Monoclonal antibodies in cancer immunotherapy. Molecular Biology Reports, 45(6), 2935–2940. https://doi.org/10.1007/s11033-018-4427-x

Korniluk, A., Koper, O., Kemona, H., & Dymicka-Piekarska, V. (2017). From inflammation to cancer. Irish Journal of Medical Science, 186(1), 57–62. https://doi.org/10.1007/s11845-016-1464-0

Leite, J. A., De Abreu Alves, A. K., Galvão, J. G. M., Teixeira, M. P., Cavalcante-Silva, L. H. A., Scavone, C., Morrot, A., Rumjanek, V. M., & Rodrigues-Mascarenhas, S. (2015). Ouabain modulates zymosan-induced peritonitis in mice. Mediators of Inflammation, 2015. https://doi.org/10.1155/2015/265798

López-Lázaro, M. (2018). The stem cell division theory of cancer. Critical Reviews in Oncology/Hematology, 123(July 2017), 95–113. https://doi.org/10.1016/j.critrevonc.2018.01.010

Machado, T. R. M., Alves, G. J., Quinteiro-Filho, W. M., & Palermo-Neto, J. (2017). Cohabitation with an Ehrlich tumor-bearing cagemate induces immune but not behavioral changes in male mice. Physiology and Behavior, 169, 82–89. https://doi.org/10.1016/j.physbeh.2016.11.022

Mascarenhas, S., Leite, J., Galvão, G., & Alves, A. (2014). Effect of ouabain on NFkB and p-38 activation in macrophages: a new biotechnological application. BMC Proceedings, 8(S4), 1–2. https://doi.org/10.1186/1753-6561-8-s4-p260

Misra, S., Hascall, V. C., Markwald, R. R., O’Brien, P. E., & Ghatak, S. (2018). Inflammation and Cancer. Wound Healing: Stem Cells Repair and Restorations, Basic and Clinical Aspects, 1, 239–274. https://doi.org/10.1002/9781119282518.ch18

Moura, E. C. R., Da Cunha Leal, P., Serra, I. C. P. B., De Paulo Ribeiro, B., Do Nascimento, J. R., Do Nascimento, F. R. F., & Sakata, R. K. (2018). Tumor growth activity of duloxetine in Ehrlich carcinoma in mice. BMC Research Notes, 11(1), 1–4. https://doi.org/10.1186/s13104-018-3655-4

Najafi, M., Hashemi Goradel, N., Farhood, B., Salehi, E., Nashtaei, M. S., Khanlarkhani, N., Khezri, Z., Majidpoor, J., Abouzaripour, M., Habibi, M., Kashani, I. R., & Mortezaee, K. (2019). Macrophage polarity in cancer: A review. Journal of Cellular Biochemistry, 120(3), 2756–2765. https://doi.org/10.1002/jcb.27646

Park, J., Wysocki, R. W., Amoozgar, Z., Maiorino, L., Fein, M. R., Jorns, J., Schott, A. F., Kinugasa-Katayama, Y., Lee, Y., Won, N. H., Nakasone, E. S., Hearn, S. A., Küttner, V., Qiu, J., Almeida, A. S., Perurena, N., Kessenbrock, K., Goldberg, M. S., & Egeblad, M. (2016). Cancer cells induce metastasis-supporting neutrophil extracellular DNA traps. Science Translational Medicine, 8(361). https://doi.org/10.1126/scitranslmed.aag1711

Petrek, J. A., Pressman, P. I., & Smith, R. A. (2000). Lymphedema: current issues in research and management. CA: A Cancer Journal for Clinicians, 50(5), 292–307. https://doi.org/10.3322/canjclin.50.5.292

Rodrigues-Mascarenhas, S., De Oliveira, A. D. S., Amoedo, N. D., Affonso-Mitidieri, O. R., Rumjanek, F. D., & Rumjanek, V. M. (2009). Modulation of the immune system by ouabain. Annals of the New York Academy of Sciences, 1153, 153–163. https://doi.org/10.1111/j.1749-6632.2008.03969.x

Rodrigues-Mascarenhas, S., De Vasconcelos, D. I. B., Leite, J. A., Carneiro, L. T., Piuvezam, M. R., De Lima, M. R. V., De Morais, L. C. L., & Rumjanek, V. M. (2011). Anti-inflammatory and antinociceptive activity of ouabain in mice. Mediators of Inflammation, 2011. https://doi.org/10.1155/2011/912925

Rodrigues-Mascarenhas, S., Santos, N. F. Dos, & Rumjanek, V. M. (2006). Synergistic effect between ouabain and glucocorticoids for the induction of thymic atrophy. Bioscience Reports, 26(2), 159–169. https://doi.org/10.1007/s10540-006-9012-1

Safwat, M. A., Kandil, B. A., Elblbesy, M. A., Soliman, G. M., & Eleraky, N. E. (2020). Epigallocatechin-3-gallate-loaded gold nanoparticles: Preparation and evaluation of anticancer efficacy in ehrlich tumor-bearing mice. Pharmaceuticals, 13(9), 1–20. https://doi.org/10.3390/ph13090254

Sagiv, J. Y., Michaeli, J., Assi, S., Mishalian, I., Kisos, H., Levy, L., Damti, P., Lumbroso, D., Polyansky, L., Sionov, R. V., Ariel, A., Hovav, A. H., Henke, E., Fridlender, Z. G., & Granot, Z. (2015). Phenotypic diversity and plasticity in circulating neutrophil subpopulations in cancer. Cell Reports, 10(4), 562–573. https://doi.org/10.1016/j.celrep.2014.12.039

Takada, Y., Matsuo, K., Ogura, H., Bai, L., Toki, A., Wang, L., Ando, M., & Kataoka, T. (2009). Odoroside A and ouabain inhibit Na+/K+-ATPase and prevent NF-?B-inducible protein expression by blocking Na+-dependent amino acid transport. Biochemical Pharmacology, 78(9), 1157–1166. https://doi.org/10.1016/j.bcp.2009.06.027

Taniguchi, K., & Karin, M. (2018). NF-B, inflammation, immunity and cancer: Coming of age. Nature Reviews Immunology, 18(5), 309–324. https://doi.org/10.1038/nri.2017.142

Tsutsui, S., Yasuda, K., Suzuki, K., Tahara, K., Higashi, H., & Era, S. (2005). Macrophage infiltration and its prognostic implications in breast cancer: The relationship with VEGF expression and microvessel density. Oncology Reports, 14(2), 425–431. https://doi.org/10.3892/or.14.2.425

Valente, R. C., Capella, L. S., Monteiro, R. Q., Rumjanek, V. M., Lopes, A. G., & Capella, M. A. M. (2003). Mechanisms of ouabain toxicity. The FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology, 17(12), 1700–1702. https://doi.org/10.1096/fj.02-0937fje

Velloso, F. J., Trombetta-Lima, M., Anschau, V., Sogayar, M. C., & Correa, R. G. (2019). NOD-like receptors: Major players (and targets) in the interface between innate immunity and cancer. Bioscience Reports, 29(4), 1–21. https://doi.org/10.1042/BSR20181709

Wang, L., Cai, W., Han, B., Zhang, J., Yu, B., & Chen, M. (2021). Ouabain exhibited strong anticancer effects in melanoma cells via induction of apoptosis, g2/m phase arrest, and migration inhibition. OncoTargets and Therapy, 14, 1261–1273. https://doi.org/10.2147/OTT.S283548

Wellenstein, M. D., Coffelt, S. B., Duits, D. E. M., van Miltenburg, M. H., Slagter, M., de Rink, I., Henneman, L., Kas, S. M., Prekovic, S., Hau, C. S., Vrijland, K., Drenth, A. P., de Korte-Grimmerink, R., Schut, E., van der Heijden, I., Zwart, W., Wessels, L. F. A., Schumacher, T. N., Jonkers, J., & de Visser, K. E. (2019). Loss of p53 triggers WNT-dependent systemic inflammation to drive breast cancer metastasis. Nature, 572(7770), 538–542. https://doi.org/10.1038/s41586-019-1450-6

Xiao, Y., Meng, C., Lin, J., Huang, C., Zhang, X., Long, Y., Huang, Y., & Lin, Y. (2017). Ouabain targets the Na+/K+-ATPase ?3 isoform to inhibit cancer cell proliferation and induce apoptosis. Oncology Letters, 14(6), 6678–6684. https://doi.org/10.3892/ol.2017.7070

Yang, X. S., Xu, Z. W., Yi, T. L., Xu, R. C., Li, J., Zhang, W. Bin, Zhang, S., Sun, H. T., Yu, Z. Q., Xu, H. X., Tu, Y., & Cheng, S. X. (2018). Ouabain suppresses the growth and migration abilities of glioma U-87MG cells through inhibiting the Akt/mTOR signaling pathway and downregulating the expression of HIF-1?. Molecular Medicine Reports, 17(4), 5595–5600. https://doi.org/10.3892/mmr.2018.8587




DOI: https://doi.org/10.14421/biomedich.2023.121.215-224

Refbacks

  • There are currently no refbacks.




Copyright (c) 2023 Amanda Costa Ayres Salmeron, Maria Beatriz Calado, Mateus da Silva Matias Antunes, Gabriel Rodrigues Da Silva, Deyse Cristina Madruga Carvalho, Beatriz Fernandes de Souza, Márcia Regina Piuvezam, Sandra Rodrigues-Mascarenhas



Biology, Medicine, & Natural Product Chemistry
ISSN 2089-6514 (paper) - ISSN 2540-9328 (online)
Published by Sunan Kalijaga State Islamic University & Society for Indonesian Biodiversity.

CC BY NC
This work is licensed under a CC BY-NC