Antibacterial Screening of Bacterial Isolates Associated with Mangrove Soil from the Ngurah Rai Mangrove Forest Bali

Anak Agung Gede Indraningrat, Made Dharmesti Wijaya, Putu Arya Suryanditha, Ayu Savitri Siskayani, Ni Made Defy Janurianti

Abstract


In this study we reported cultivation of bacteria associated with mangrove soil from the Ngurah Rai Mangrove Forest, Bali. Mangrove soil samples were serially diluted using sterile artificial seawater, spread onto Starch Casein M agar and incubated at 28oC for 28 days. Cultivation of mangrove soil samples yielded 165 bacterial colonies with 68 isolates were selected and purified based on different morphology. Of these 68 isolates, 22 isolates displayed antibacterial activities ranging from weak to strong inhibition against at least one of four bacterial indicators namely Staphyloccocus aureus, Streptococus mutans, Escherichia coli and Klebsiella pneumoniae using perpendicular streak method. Overall, 19 out of 22 bacteria isolates displayed weak antibacterial potential and two isolates exhibited moderate antibacterial activity. The isolate SA4 was the only bacterium with strong antibacterial potential with measured clear distance ≥ 10 mm against the four bacterial isolates. Sequence analysis based on 16S rRNA gene fragment assigned the isolate SA4 as Bacillus subtilis strain BIL/BS-168. Overall, this study confirmed the untapped potential of antibacterial activities from bacteria associated with mangrove soil.


Keywords


mangrove soil; bacteria; antibacterial screening

Full Text:

PDF

References


Assis, D. A., Rezende, R. P., & Dias, J. C. (2014). Use of Metagenomics and Isolation of Actinobacteria in Brazil's Atlantic Rainforest Soil for Antimicrobial Prospecting. ISRN Biotechnol, 2014, 909601. doi:10.1155/2014/909601

Azman, A. S., Othman, I., Velu, S. S., Chan, K. G., & Lee, L. H. (2015). Mangrove rare actinobacteria: taxonomy, natural compound, and discovery of bioactivity. Front Microbiol, 6, 856. doi:10.3389/fmicb.2015.00856

Balai Pemantapan Kawasan Hutan Wilayah VIII Denpasar. (2018). Potensi Wisata Taman Hutan Raya Ngurah Rai Provinsi Bali. In. http://bpkh8.menlhk.go.id/pdf/karya_tulis_mandiri/liflet_tahura.pdf.

Balouiri, M., Sadiki, M., & Ibnsouda, S. K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis, 6(2), 71-79. doi:https://doi.org/10.1016/j.jpha.2015.11.005

Bentley, S. D., Chater, K. F., Cerdeno-Tarraga, A. M., Challis, G. L., Thomson, N. R., James, K. D., . . . Hopwood, D. A. (2002). Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature, 417(6885), 141-147. doi:10.1038/417141a

Boontanom, P., & Chantasari, A. (2020). Diversity of culturable epiphytic bacteria isolated from seagrass (Halodule uninervis) in Thailand and their preliminary antibacterial activity. Biodiversitas, 21(7). doi:https://doi.org/10.13057/biodiv/d210706

Booth, J. (2018). Ecology of Mangrove Microbiome. (PhD). King Abdulah University of Science and Technology,

Caulier, S., Nannan, C., Gillis, A., Licciardi, F., Bragard, C., & Mahillon, J. (2019). Overview of the Antimicrobial Compounds Produced by Members of the Bacillus subtilis Group. Frontiers in Microbiology, 10(302). doi:10.3389/fmicb.2019.00302

Centers for Disease Control and Prevention. (2018). Antibiotic Resistance: A Global Threat. Retrieved from Atlanta:

Cheng, G., Dai, M., Ahmed, S., Hao, H., Wang, X., & Yuan, Z. (2016). Antimicrobial Drugs in Fighting against Antimicrobial Resistance. Front Microbiol, 7, 470. doi:10.3389/fmicb.2016.00470

Debbab, A., Aly, A. H., Lin, W. H., & Proksch, P. (2010). Bioactive compounds from marine bacteria and fungi. Microb Biotechnol, 3(5), 544-563. doi:10.1111/j.1751-7915.2010.00179.x

Elbendary, A. A., Hessain, A. M., El-Hariri, M. D., Seida, A. A., Moussa, I. M., Mubarak, A. S., . . . El Jakee, J. K. (2018). Isolation of antimicrobial producing Actinobacteria from soil samples. Saudi J Biol Sci, 25(1), 44-46. doi:10.1016/j.sjbs.2017.05.003

Friess, D. A. (2016). Mangrove forests. Curr Biol, 26(16), R746-748. doi:10.1016/j.cub.2016.04.004

Jiang, Z. K., Tuo, L., Huang, D. L., Osterman, I. A., Tyurin, A. P., Liu, S. W., . . . Sun, C. H. (2018). Diversity, Novelty, and Antimicrobial Activity of Endophytic Actinobacteria From Mangrove Plants in Beilun Estuary National Nature Reserve of Guangxi, China. Front Microbiol, 9, 868. doi:10.3389/fmicb.2018.00868

Lane, D. J. (1991). 16S/23S rRNA Sequencing (E. Stackebrandt & M. Goodfellow (eds.); Nucleic Ac. John Wiley and Sons, pp. 115–175.

Lee, L. H., Zainal, N., Azman, A. S., Eng, S. K., Goh, B. H., Yin, W. F., . . . Chan, K. G. (2014). Diversity and antimicrobial activities of actinobacteria isolated from tropical mangrove sediments in Malaysia. ScientificWorldJournal, 2014, 698178. doi:10.1155/2014/698178

Mohamed, H., Miloud, B., Zohra, F., Garcia-Arenzana, J. M., Veloso, A., & Rodriguez-Couto, S. (2017). Isolation and Characterization of Actinobacteria from Algerian Sahara Soils with Antimicrobial Activities. Int J Mol Cell Med, 6(2), 109-120. doi:10.22088/acadpub.BUMS.6.2.5

Munita, J. M., & Arias, C. A. (2016). Mechanisms of Antibiotic Resistance. Microbiol Spectr, 4(2). doi:10.1128/microbiolspec.VMBF-0016-2015

Roca, I., Akova, M., Baquero, F., Carlet, J., Cavaleri, M., Coenen, S., . . . Vila, J. (2015). The global threat of antimicrobial resistance: science for intervention. New Microbes New Infect, 6, 22-29. doi:10.1016/j.nmni.2015.02.007

Sharma, G., Dang, S., Gupta, S., & Gabrani, R. (2018). Antibacterial Activity, Cytotoxicity, and the Mechanism of Action of Bacteriocin from Bacillus subtilis GAS101. Med Princ Pract, 27(2), 186-192. doi:10.1159/000487306

Singh, V., Haque, S., Singh, H., Verma, J., Vibha, K., Singh, R., . . . Tripathi, C. K. (2016). Isolation, Screening, and Identification of Novel Isolates of Actinomycetes from India for Antimicrobial Applications. Front Microbiol, 7, 1921. doi:10.3389/fmicb.2016.01921

van der Heul, H. U., Bilyk, B. L., McDowall, K. J., Seipke, R. F., & van Wezel, G. P. (2018). Regulation of antibiotic production in Actinobacteria: new perspectives from the post-genomic era. Nat Prod Rep, 35(6), 575-604. doi:10.1039/c8np00012c

Ventola, C. L. (2015). The antibiotic resistance crisis: part 1: causes and threats. P & T : a peer-reviewed journal for formulary management, 40(4), 277-283. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/25859123 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4378521/

World Health Organization. (2018). Antibiotic Resistance. Retrieved from Geneva: https://www.who.int/news-room/fact-sheets/detail/antibiotic-resistance




DOI: https://doi.org/10.14421/biomedich.2021.102.129-133

Refbacks

  • There are currently no refbacks.




Copyright (c) 2021 Anak Agung Gede Indraningrat, Made Dharmesti Wijaya, Putu Arya Suryanditha, Ayu Savitri Siskayani, Ni Made Defy Janurianti



Biology, Medicine, & Natural Product Chemistry
ISSN 2089-6514 (paper) - ISSN 2540-9328 (online)
Published by Sunan Kalijaga State Islamic University & Society for Indonesian Biodiversity.

Creative Commons License
This work is licensed under a CC BY-NC