Actinomycetes from Plant Rhizosphere in Gorontalo Karst Area as Plant Growth Promoting Rhizobacteria

Citra Leonita Matalauni, Yuliana Retnowati, Abubakar Sidik Katili, Novri Youla Kandowangko, Ani M. Hasan

Abstract


This study aimed to describe Actinomycetes from the rhizosphere of plants in the Gorontalo karst area as Plant Growth Promoting Rhizobacteria (PGPR). The research method is based on a quantitative descriptive method. Soil samples from the rhizosphere were collected using a purposive sampling technique from 8 plant species at two locations in the Gorontalo karst region, namely the Tanjung Kramat Hills. The characteristics of PGPR in this study focused on phosphate solubilization ability, Indole Acetic Acid (IAA) production, antagonism against the fungus Fusarium oxysporum, and tolerance to fungicides. Potential PGPR isolates were analyzed for phylogenetic relationships based on 16S rRNA gene sequences. The results showed that there were 6 actinomycetes isolates (RzHKC-01, RzKO-02, RzO-03, RzAK-04, RzPK-05, and RzOC-06) from 8 plant species in the Gorontalo karst region. One actinomycetes isolate, RzPK-05, showed potential as a PGPR with the ability to solubilize phosphate and produce IAA at 0.165 mg/L and 0.133 mg/L, respectively. Isolate RzPK-05 exhibited antagonistic properties against Fusarium oxysporum with an inhibition rate of 82.24% and was tolerant to fungicides such as Captive, Benlate, and Thiramo up to a concentration of 100 mg/L. Molecular analysis based on the 16S rRNA gene and phylogenetic tree reconstruction indicated that the RzPK-05 isolate is closely related to the genus Streptomyces with 100% similarity.

Keywords


Actinomycetes; Karst; PGPR; Rhizosphere

Full Text:

PDF

References


Anwar, S., Ali, B., & Sajid, I. (2016). Screening of rhizospheric Actinomycetes for various in-vitro and in-vivo plant growth promoting (PGP) traits and for agroactive compounds. Frontiers in microbiology, 7, 1334. https://doi.org/10.3389/fmicb.2016.01334

Astriani M. (2015). Seleksi Bakteri Penghasil Indole Acetic Acid (IAA) dan Pengujian Pada Bibit Kelapa Sawit (Elais guneensus Jacq.). (Tesis). Bogor (ID): Institut Pertanian Bogor.

Dewi, M. S. (2018). Bedah Apikal Untuk Menangani Iritasi Kronik Pada Jaringan Yang Disebabkan Overfilling Bahan Pengisi Endodontik. Proceeding Book, 90.

Etchells, J. P., Smit, M. E., Gaudinier, A., Williams, C. J., & Brady, S. M. (2016). A brief history of the TDIF?PXY signalling module: balancing meristem identity and differentiation during vascular development. New Phytologist, 209(2), 474-484. https://doi.org/10.1111/nph.13642

Fan, Z., Lu, S., Liu, S., Guo, H., Wang, T., Zhou, J., & Peng, X. (2019). Changes in plant rhizosphere microbial communities under different vegetation restoration patterns in karst and non-karst ecosystems. Scientific Reports, 9(1), 8761. https://doi.org/10.1038/s41598-019-44985-8

Goldscheider, N., Chen, Z., Auler, A. S., Bakalowicz, M., Broda, S., Drew, D., ... & Veni, G. (2020). Global distribution of carbonate rocks and karst water resources. Hydrogeology Journal, 28(5), 1661-1677. https://doi.org/10.1007/s10040-020-02139-5

Hutagaol, D., & Nuraida, F. H. (2022). Mikroorganisme Pelarut Fosfat (Kajian Ketersediaan P, Pertumbuhan dan Produksi Padi sawah). Bogor: Guepedia. ISBN: 978-623-407-211 -2.

Ilsan, N. A. (2016). Aktinomisetes Filosfer Padi Sebagai Agens Pengendali Hayati Penyakit Hawar Daun Bakteri Pada Padi (Doctoral dissertation, Bogor Agricultural University (IPB)).

Jog, R., Pandya, M., Nareshkumar, G., & Rajkumar, S. (2014). Mechanism of phosphate solubilization and antifungal activity of Streptomyces spp. isolated from wheat roots and rhizosphere and their application in improving plant growth. Microbiology, 160(4), 778-788. https://doi.org/10.1099/mic.0.074146-0

Kanini, G. S., Katsifas, E. A., Savvides, A. L., Hatzinikolaou, D. G., & Karagouni, A. D. (2013). Greek indigenous streptomycetes as biocontrol agents against the soil?borne fungal plant pathogen Rhizoctonia solani. Journal of Applied Microbiology, 114(5), 1468-1479. https://doi.org/10.1111/jam.12138

Karpagam,T. and Nagalakshmi,P. K. (2014). Isolation and characterization of phosphate solubilizing microbes from agricultural soil. International Journal of Current Microbiology and Applied Sciences, 3(3), 601-614.

Katili, A. S., & Retnowati, Y. (2017). Isolation of Actinomycetes from mangrove ecosystem in Torosiaje, Gorontalo, Indonesia. Biodiversitas Journal of Biological Diversity, 18(2), 826-833. https://doi.org/10.13057/biodiv/d180256

Kaur, N., Sharma., (2013). Expolation of Rhizobacteria for Functional traits in Mungbean. Int J Agri Environ Biotech. 6(4): 533-543. http://doi.org.10.5958/j.2230-732X.6.4.028

Lakshmanan, V., Selvaraj, G., & Bais, H. P. (2014). Functional soil microbiome: belowground solutions to an aboveground problem. Plant physiology, 166(2), 689-700. https://doi.org/10.1104/pp.114.245811

Liu, F. P., Liu, H. Q., Zhou, H. L., Dong, Z. G., Bai, X. H., Bai, P., & Qiao, J. J. (2014). Isolation and characterization of phosphate-solubilizing bacteria from betel nut (Areca catechu) and their effects on plant growth and phosphorus mobilization in tropical soils. Biology and fertility of soils, 50, 927-937. https://doi.org/10.18343/jipi.28.3.352

Lin L, Xu XD. (2013). Indole-3-acetic acid production by endophytic Streptomyces sp. En-1 isolated from medicinal plants. Curr Microbiol. 67(2):209–17.

Louis P, Scott KP, Duncan SH, Flint HJ. (2007). Understanding the effects of diet on bacterial metabolism in the large intestine. J Appl Microbiol; 102(5): 1197- 208. https://doi.org/10.1111/j.1365-2672.2007.03322.x

Lu, X., Toda, H., Ding, F., Fang, S., Yang, W., & Xu, H. (2014). Effect of vegetation types on chemical and biological properties of soils of karst ecosystems. European Journal of Soil Biology, 61, 49-57. https://doi.org/10.1016/j.ejsobi.2013.12.007

Lyn, T. M., Win, H. S., Kyaw, E. P., Latt, Z. K., & Yu, S. S. (2013). Characterization of phosphate solubilizing and potassium decomposing strains and study on their effects on tomato cultivation. International Journal of Innovation and Applied Studies, 3(4), 959-966.

Mangamuri UK, Muvva V, Poda S, Kamma S. (2012). Isolation, Identification and Molecular Characterization of Rare Actinomycetes from Mangrove Ecosystem of Nizampatnam. Malays J Microbiol, 8 (2), 83-91. https://doi.org/10.21161/mjm.03212

Maulana, R., Bahar, M., & Nugrohowati, N. (2022). Efektivitas Isolat Actinomycetes dari Sampel Tanah Kebun Raya Bogor dalam Menghambat Pertumbuhan Salmonella typhi Secara In Vitro. In Seminar Nasional Riset Kedokteran, 3, (1).

Meng, W., Ran, J., Dai, Q., Tu, N., Leng, T., & Ren, Q. (2023). Morphological and physiological adaptation characteristics of lithophytic bryophytes to karst high calcium environment. BMC Plant Biology, 23(1), 160. https://doi.org/10.1186/s12870-022-03980-4

Mubarak, F., Rante, H., & Djide, N. (2017). Isolasi dan aktivitas antimikroba Aktinomycetes dari tanah Karst Taman Wisata Bantimurung asal Maros Sulawesi Selatan. As-Syifaa Jurnal Farmasi, 9(1), 1 -10. https://doi.org/10.56711/jifa.v9i1.226

Nisa, N. A. (2018). Isolasi dan Identifikasi Bakteri Pelarut Fosfat dengan Sekuensi 16s Rrna Asal Tanah Pertanian Organic Desa Sumberejo Batu. Skripsi. Fakultas Sains dan Teknologi Universitas Islam Negeri Maulana Malik Ibrahim. Malang.

Nurjasmi, R., Widada, J., & Ngadiman, N. (2009). Diversity of Actinomycetes at several forest types in Wanagama I Yogyakarta and their potency as a producer of antifungal compound. Indonesian Journal of Biotechnology, 14(2). https://doi.org/10.22146/ijbiotech.7813

Oksana, M. I., Fianiray, A. R., & Zam, S. I. (2020). Isolasi dan identifikasi bakteri pelarut fosfat pada tanah ultisol di Kecamatan Rumbai, Pekanbaru. Agrotechnology Research Journal, 4(1), 22-25. https://doi.org/10.20961/agrotechresj.v4i1.36063

Passalacqua KD, Charbonneau ME, O'Riordan MXD. (2016). Bacterial Metabolism Shapes the Host-Pathogen Interface. Microbiol Spectr; 4(3): 101–128. https://doi.org/10.1128/microbiolspec.VMBF-0027-2015

Patten, C. L., & Glick, B. R. (2002). Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Applied and environmental microbiology, 68(8), 3795-3801. https://doi.org/10.1128/AEM.68.8.3795-3801.2002

Putri, A. L., Lisdiyanti, P., & Kusmiati, M. (2018). Identifikasi Actinomycetes Sedimen Air Tawar Mamasa, Sulawesi Barat Dan Aktivitasnya Sebagai Antibakteri Dan Pelarut Fosfat. Jurnal Bioteknologi dan Biosains Indonesia, 5(2), 139-148. https://doi.org/10.29122/jbbi.v5i2.2953

Rajput MS, Naresh KG, Rajkumar S. (2013). Repression of oxalic acid-mediated mineral phosphate solubilization in rhizospheric isolates of Klebsiella pneumoniae by succinate. Arch Microbiol, 195:81–88. https://doi.org/10.1007/s00203-012-0850-x

Retnowati, Y., Sembiring, L., Moeljopawiro, S., Djohan, T. S., & Soetarto, E. S. (2017). Diversity of antibiotic-producing Actinomycetes in mangrove forest of Torosiaje, Gorontalo, Indonesia. Biodiversitas Journal of Biological Diversity, 18(4), 1453-1461. https://doi.org/10.13057/biodiv/d180421

Retnowati Y, Katili AS. (2023). Antibacterial activity of sponge-associated bacteria from Torosiaje Marine Area, Gorontalo, Indonesia.

Biodiversitas, 24 (2): 1151 -1156. https://doi.org/10.13057/biodiv/d240255

Retnowati Y, Kandowangko NY, Katili AS, Pembengo W. (2024). Diversity of Actinomycetes on plant rhizosphere of karst ecosystem

of Gorontalo, Indonesia. Biodiversitas, 25 (3): 907-1 15. https://doi.org/10.13057/biodiv/d250301

Sukmadewi TK., Suharjono, Antonius S. (2015). Uji Potensi Bakteri Penghasil Hormon IAA (Indole Acetic Acid) dari Tanah Rhizosfer Cengkeh (Syzigium aromaticum). Jurnal Biotropika, 3(2): 91-94.

Vurukonda, S.S.K.P., Giovanardi, D., and Stefani, E. (2018). Plant Growth Promoting and Biocontrol Activity of Streptomyces spp. as Endophytes. International Journal of Molecular Sciences, 19(4), 952. https://doi.org/10.3390/ijms19040952

Zhang BX, Li PS, Wang YY, Wang JJ, Liu XL, Wang XY, dan Hu XM. (2021). Characterization and Synthesis of Indole-3-Acetic Acid in Plant Growth Promotion Enterobacter sp. Royal Society of Chemistry (11): 31601– 31607. https://doi.org/10.1039/D1RA05659J

Zhang, P., Jin, T., Kumar Sahu, S., Xu, J., Shi, Q., Liu, H., & Wang, Y. (2019). The distribution of tryptophan-dependent indole-3-acetic acid synthesis pathways in bacteria unraveled by large-scale genomic analysis. Molecules, 24(7), 1411. https://doi.org/10.3390/molecules2407141




DOI: https://doi.org/10.14421/biomedich.2025.142.1047-1053

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 Citra Leonita Matalauni, Yuliana Retnowati, Abubakar Sidik Katili, Novri Youla Kandowangko, Ani M. Hasan



Biology, Medicine, & Natural Product Chemistry
ISSN 2089-6514 (paper) - ISSN 2540-9328 (online)
Published by Sunan Kalijaga State Islamic University & Society for Indonesian Biodiversity.

CC BY NC
This work is licensed under a CC BY-NC