Predicting the Anti-Pulmonary Fibrosis Potential of Physalis angulata Compounds A Computational Study
Abstract
Pulmonary fibrosis is a progressive lung disease characterized by tissue scarring and respiratory decline. Existing treatments have limited efficacy and significant side effects. Physalis angulata, a traditional medicinal plant, shows promise for antifibrotic therapy due to its bioactive compounds potentially targeting key fibrotic pathways. This study aims to predict the potential of Physalis angulata compounds to PI3K/AKT protein as candidates for antifibrotic therapy. Ten active compounds from P. angulata were docked against the PI3K/AKT protein (PDB ID: 2UZT) using AutoDock Vina. Docking was validated by redocking the native ligand. Binding affinities and molecular interactions were analyzed. ADMET properties were predicted via the pkCSM platform to assess pharmacokinetics and toxicity. Myricetrin exhibited the strongest binding affinity (-9.6 kcal/mol), surpassing the native ligand (-9.1 kcal/mol). Other flavonoids, including eriodictyol (-8.9 kcal/mol), naringin (-8.8 kcal/mol), and apigenin (-8.5 kcal/mol), also showed favorable affinities. Critical amino acids involved were Asp184 and Glu121. The redocking RMSD value of 0.893 Ã confirmed methodological accuracy. ADMET predictions revealed high intestinal absorption for tangeretin and apigenin, with no mutagenic or hepatotoxic risks, indicating good pharmacokinetic profiles. Physalis angulata flavonoids exhibit strong PI3K/AKT binding and favorable pharmacokinetics, supporting their potential as antifibrotic agents.
Keywords
Full Text:
PDFReferences
Alfaro, T. M., & Robalo Cordeiro, C. (2020). Comorbidity in idiopathic pulmonary fibrosis - what can biomarkers tell us? Therapeutic Advances in Respiratory Disease, 14. https://doi.org/10.1177/1753466620910092
Ananthathandavan, P., & Narayanasamy, D. (2024). Computational drug–drug interaction prediction mediated by CYP450 isoforms of Ilaprazole coadministered with clopidogrel. Future Science OA, 10(1). https://doi.org/10.2144/fsoa-2023-0277
Bestari, M. B., Rohmawaty, E., Rosdianto, A. M., Usman, H. A., Saragih, W. A., Zuhrotun, A., Hendriani, R., Wardhana, Y. W., Ekawardhani, S., Lina Wiraswati, H., Agustanti, N., Dewi, S., & Wijaya, M. P. (2023). Physalis angulata Linn. As a Potential Liver Antifibrotic Agent In Rats. The Indonesian Journal of Gastroenterology, 24(3).
Ekeke, C., Obute, G. C., & Ogazie, C. A. (2019). HPLC Evaluation of Phenolic Compounds in Physalis angulata Linn. and Physalis micrantha Linn. (Solanaceae). European Journal of Medicinal Plants, 1–9. https://doi.org/10.9734/ejmp/2019/v29i230151
Fadhli, H., Ruska, S. L., Furi, M., Suhery, W. N., Susanti, E., & Nasution, M. R. (2023). Ciplukan (Physalis angulata L.): Review Tanaman Liar yang Berpotensi Sebagai Tanaman Obat. Jurnal Farmasi Indonesia, 15(2), 134–141. https://doi.org/10.35617/jfionline.v15i2.144
Fan, Z., Pu, X., Li, L., Li, Q., Jiang, T., Lu, L., Tang, J., Pan, M., Zhang, L., & Chai, Y. (2023). Mechanism of Polygonum capitatum intervention in pulmonary fibrosis based on network pharmacology and molecular docking technology: A review. Medicine (United States), 102(37), E34912. https://doi.org/10.1097/MD.0000000000034912
Farid, M., Rastrani, A., Rahma, A. A., & Ramadhania, W. A. (2025). Prediction of Artocarpus altilis Potential as an Anti Breast Cancer by Inhibiting EGFR: a Molecular Docking Study. Biology, Medicine, & Natural Product Chemistry, 14(1), 199–204. https://doi.org/10.14421/biomedich.2025.141.199-204
Fukata, E., Aulanni’am, Rohman, M. S., Fakurazi, S., Nik Malek, N. A. N., Kawamoto, Y., & Endharti, A. T. (2025). In silico prediction of cinnamaldehyde on the PI3K/AKT pathway activator of anti-apoptotic potential. Journal of Pharmacy and Pharmacognosy Research, 13(2), 565–577. https://doi.org/10.56499/jppres24.2045_13.2.565
Glass, D. S., Grossfeld, D., Renna, H. A., Agarwala, P., Spiegler, P., DeLeon, J., & Reiss, A. B. (2022). Idiopathic pulmonary fibrosis: Current and future treatment. Clinical Respiratory Journal, 16(2), 84–96. https://doi.org/10.1111/crj.13466
Imaduddin, U. K., Berbudi, A., & Rohmawaty, E. (2024). The Effect of Physalis angulata L. Administration on Gene Expressions Related to Lung Fibrosis Resolution in Mice-Induced Bleomycin. Journal of Experimental Pharmacology, 16, 49–60. https://doi.org/10.2147/JEP.S439932
Kardos, P., Dinh, Q. T., Fuchs, K. H., Gillissen, A., Klimek, L., Koehler, M., Sitter, H., & Worth, H. (2020). German Respiratory Society guidelines for diagnosis and treatment of adults suffering from acute, subacute and chronic cough. Respiratory Medicine, 170. https://doi.org/10.1016/j.rmed.2020.105939
Ke, B., Shen, W., Fang, X., & Wu, Q. (2018). The NLPR3 inflammasome and obesity-related kidney disease. In Journal of Cellular and Molecular Medicine (Vol. 22, Issue 1, pp. 16–24). Blackwell Publishing Inc. https://doi.org/10.1111/jcmm.13333
Ke, H. L., Li, R. J., Yu, C. C., Wang, X. P., Wu, C. Y., & Zhang, Y. W. (2024). Network pharmacology and experimental verification to decode the action of Qing Fei Hua Xian Decotion against pulmonary fibrosis. PLoS ONE, 19(6 June). https://doi.org/10.1371/journal.pone.0305903
Kreuter, M., Müller-Ladner, U., Costabel, U., Jonigk, D., & Heußel, C. P. (2021). Diagnostik und Therapie der Lungenfibrosen. Deutsches Arzteblatt International, 118(9), 152–162. https://doi.org/10.3238/arztebl.m2021.0018
Lee, J. H., & Song, J. W. (2024). Diagnostic Approaches for Idiopathic Pulmonary Fibrosis. Tuberculosis and Respiratory Diseases, 87(1), 40–51. https://doi.org/10.4046/trd.2023.0087
Liu, T., Xu, P., Qi, S., Ke, S., Hu, Q., Zhao, P., & Li, J. (2021). Network Pharmacology-Based Mechanistic Investigation of Jinshui Huanxian Formula Acting on Idiopathic Pulmonary Fibrosis. Evidence-Based Complementary and Alternative Medicine, 2021. https://doi.org/10.1155/2021/8634705
Martinez, F. J., Collard, H. R., Pardo, A., Raghu, G., Richeldi, L., Selman, M., Swigris, J. J., Taniguchi, H., & Wells, A. U. (2017). Idiopathic pulmonary fibrosis. Nature Reviews Disease Primers, 3. https://doi.org/10.1038/nrdp.2017.74
Mazurek, J. M., Syamlal, G., & Weissman, D. N. (2025). Morbidity and Mortality Weekly Report Idiopathic Pulmonary Fibrosis Mortality by Industry and Occupation-United States, 2020-2022. Morbidity and Mortality Weekly Report, 74(7). https://www.cdc.gov/mmwr/mmwr_continuingEducation.html
Nguyen, K. N. H., Nguyen, N. V. T., & Kim, K. H. (2021). Determination of phenolic acids and flavonoids in leaves, calyces, and fruits of Physalis angulata L. in Viet Nam. Pharmacia, 68(2), 501–509. https://doi.org/10.3897/PHARMACIA.68.E66044
Nogales, C., Mamdouh, Z. M., List, M., Kiel, C., Casas, A. I., & Schmidt, H. H. H. W. (2022). Network pharmacology: curing causal mechanisms instead of treating symptoms. Trends in Pharmacological Sciences, 43(2), 136–150. https://doi.org/10.1016/j.tips.2021.11.004
Novitasari, A., Rohmawaty, E., & Rosdianto, A. M. (2024). Physalis angulata Linn. as a medicinal plant (Review). Biomedical Reports, 20(3). https://doi.org/10.3892/br.2024.1735
Pillai, J. R., Wali, A. F., Menezes, G. A., Rehman, M. U., Wani, T. A., Arafah, A., Zargar, S., & Mir, T. M. (2022). Chemical Composition Analysis, Cytotoxic, Antimicrobial and Antioxidant Activities of Physalis angulata L.: A Comparative Study of Leaves and Fruit. Molecules, 27(5). https://doi.org/10.3390/molecules27051480
Prasetyo, Y. C., & Purwanti, N. (2024). Ciplukan’s Anti-Inflammatory Effects: Mechanisms Uncovered. Berkala Ilmiah Kedokteran Duta Wacana, 9(1). https://doi.org/10.21460/bikdw.v9i1.656
Rohmawaty, E., Dewi, S., Rosdianto, A. M., Usman, H. A., Zuhrotun, A., Hendriani, R., Wardhana, Y. W., Ekawardhani, S., Wiraswati, H. L., Rahmadi, A. R., Agustanti, N., & Begawan Bestari, M. (2023). Ciplukan (Physalis Angulata Linn.) Extract Potential on High-Fat Diet-Induced Non-alcoholic Fatty Liver Disease (NAFLD) for Liver Anti-Fibrotic Drug Development. Indonesian Journal of Pharmacy, 34(4), 582–592.
Rohmawaty, E., Rosdianto, A. M., Usman, H. A., Saragih, W. A. M., Zuhrotun, A., Hendriani, R., Wardhana, Y. W., Ekawardhani, S., Wiraswati, H. L., Agustanti, N., Bestari, M. B., & Dewi, S. (2021). Antifibrotic effect of the ethyl acetate fraction of ciplukan (Physalis angulata Linn.) in rat liver fibrosis induced by CCI4. Journal of Applied Pharmaceutical Science, 11(12), 175–182. https://doi.org/10.7324/JAPS.2021.1101217
Utami, D., Elmaningtyas Zahro, T., Nisa, K., & Farid, M. (2025). In Silico Study: The Potential of Kilemo (Litsea cubeba) Endemic Plant from Kalimantan as Anti-Breast Cancer Through Her2 Inhibition. Jurnal Ilmiah Ibnu Sina, 10(1), 167–181. https://doi.org/10.36387/jiis.v9i2.2352
Vithalkar, M. P., Sandra, K. S., Bharath, H. B., Krishnaprasad, B., Fayaz, S. M., Sathyanarayana, B., & Nayak, Y. (2025). Network Pharmacology-driven therapeutic interventions for Interstitial Lung Diseases using Traditional medicines: A Narrative Review. International Immunopharmacology, 147. https://doi.org/10.1016/j.intimp.2024.113979
Wang, J., Hu, K., Cai, X., Yang, B., He, Q., Wang, J., & Weng, Q. (2022). Targeting PI3K/AKT signaling for treatment of idiopathic pulmonary fibrosis. Acta Pharmaceutica Sinica B, 12(1), 18–32. https://doi.org/10.1016/j.apsb.2021.07.023
Wiraswati, H. L., Ekawardhani, S., Rohmawaty, E., Laelalugina, A., Zuhrotun, A., Hendriani, R., Wardhana, Y. W., Bestari, M. B., Sahirdjan, E. H., & Dewi, S. (2024). Antioxidant, Antiinflammation, and Antifibrotic Activity of Ciplukan (Physalis angulata L). Extract. Journal of Inflammation Research , 17, 6297–6306. https://doi.org/10.2147/JIR.S470318
Zaman, T., & Lee, J. S. (2018). Risk Factors for the Development of Idiopathic Pulmonary Fibrosis: a Review. Current Pulmonology Reports, 7(4), 118–125. https://doi.org/10.1007/s13665-018-0210-7
Zheng, Q., Cox, I. A., Campbell, J. A., Xia, Q., Otahal, P., de Graaff, B., Corte, T. J., Teoh, A. K. Y., Walters, E. H., & Palmer, A. J. (2022). Mortality and survival in idiopathic pulmonary fibrosis: a systematic review and meta-analysis. ERJ Open Research, 8(1). https://doi.org/10.1183/23120541.00591-2021
Zhou, J., Hu, J., Liu, J., & Zhang, W. (2024). Elucidating the gastroprotective mechanisms of Imperata cylindrica Beauv.var. major (Nees) C.E.Hubb through UHPLC-MS/MS and systems network pharmacology. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-79483-z
DOI: https://doi.org/10.14421/biomedich.2025.142.817-824
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Muhammad Farid, Assa Aulia Kirana, Nandita Diah Oktaviana, Sofia Rasyda, Dwi Anggraini, Widya Aryana Ramadhania
Biology, Medicine, & Natural Product Chemistry |