Investigating Genetic Vulnerability to Environmental Exposures and Associated Lung Diseases: A Bioinformatics Study

Muhammad Farid, Ardestya Rastrani, Shaldhan Bayu Yuska

Abstract


Lung diseases induced by environmental exposures such as air pollution, cigarette smoke, and industrial particles remain a significant global health concern, contributing to high morbidity and mortality rates. Genetic variations are known to influence individual responses to environmental exposures, but the molecular mechanisms underlying these interactions are not well understood. This study aims to identify genetic variants, specifically Single Nucleotide Polymorphisms (SNPs), that may increase the risk of lung diseases using a bioinformatics approach. The analysis was conducted by integrating various public genetic databases, including PheWAS, GWAS Catalog, HaploReg v4.2, GTEx Portal, and Ensembl Genome Browser. SNPs were filtered based on p-value < 0.05 and odds ratio (OR) > 1. Missense mutations in selected SNPs were further analyzed for gene expression in lung tissue and distribution across populations. From an initial 151 SNPs, 86 met the statistical criteria, and six were identified as missense variants. Two genes, TNIP1 and PSMB8, showed significantly high expression in lung tissue. SNP rs2071543 in PSMB8 exhibited a strong correlation with increased gene expression and demonstrated notable allele frequency variation across populations. These findings suggest that genetic variations, particularly in PSMB8, may contribute to individual susceptibility to lung diseases induced by environmental exposures. This study highlights the importance of multidatabase analysis in identifying genetic biomarkers and provides a foundation for the development of precision therapies for multifactorial lung diseases.

Keywords


Bioinformatics study; environmental exposures; lung disease; PSMB8; rs2071543

Full Text:

PDF

References


Adam, M., Schikowski, T., Carsin, A. E., Cai, Y., Jacquemin, B., Sanchez, M., Vierkötter, A., Marcon, A., Keidel, D., Sugiri, D., Al Kanani, Z., Nadif, R., Siroux, V., Hardy, R., Kuh, D., Rochat, T., Bridevaux, P. O., Eeftens, M., Tsai, M. Y., … Probst-Hensch, N. (2015). Adult lung function and long-term air pollution exposure. ESCAPE: A multicentre cohort study and meta-analysis. European Respiratory Journal, 45(1), 38–50. https://doi.org/10.1183/09031936.00130014

Adikusuma, W., Irham, L. M., Chou, W. H., Wong, H. S. C., Mugiyanto, E., Ting, J., Perwitasari, D. A., Chang, W. P., & Chang, W. C. (2021). Drug Repurposing for Atopic Dermatitis by Integration of Gene Networking and Genomic Information. Frontiers in Immunology, 12. https://doi.org/10.3389/fimmu.2021.724277

Aldabayan, Y. S. (2025). Effect of Artificial Food Additives on Lung Health—An Overview. Medicina, 61(4), 684. https://doi.org/10.3390/medicina61040684

Burbelo, P. D., Ambatipudi, K., & Alevizos, I. (2014). Genome-wide association studies in Sjögren’s syndrome: What do the genes tell us about disease pathogenesis? In Autoimmunity Reviews (Vol. 13, Issue 7, pp. 756–761). Elsevier. https://doi.org/10.1016/j.autrev.2014.02.002

Camarena, Á., Aquino-Galvez, A., Falfán-Valencia, R., Sánchez, G., Montaño, M., Ramos, C., Juárez, A., García-de-Alba, C., Granados, J., & Selman, M. (2010). PSMB8 (LMP7) but not PSMB9 (LMP2) gene polymorphisms are associated to pigeon breeder’s hypersensitivity pneumonitis. Respiratory Medicine, 104(6), 889–894. https://doi.org/10.1016/j.rmed.2010.01.014

Eckhardt, C. M., & Wu, H. (2021). Environmental Exposures and Lung Aging: Molecular Mechanisms and Implications for Improving Respiratory Health. In Current Environmental Health Reports (Vol. 8, Issue 4, pp. 281–293). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/s40572-021-00328-2

Harber, P., Redlich, C. A., & Henneberger, P. K. (2016). Work-Related Lung Diseases. American Journal of Respiratory and Critical Care Medicine, 193(2), P3–P4. https://doi.org/10.1164/rccm.1932P3

He, J., Li, X., & Yu, M. (2022). Bioinformatics Analysis Identifies Potential Ferroptosis Key Genes in the Pathogenesis of Pulmonary Fibrosis. Frontiers in Genetics, 12. https://doi.org/10.3389/fgene.2021.788417

Irham, L. M., Adikusuma, W., Lolita, L., Puspitaningrum, A. N., Afief, A. R., Sarasmita, M. A., Dania, H., Khairi, S., Djalilah, G. N., Purwanto, B. D., & Chong, R. (2023). Investigation of susceptibility genes for chickenpox disease across multiple continents. Biochemistry and Biophysics Reports, 33. https://doi.org/10.1016/j.bbrep.2022.101419

Kim, Y. A., Hodzic, E., Amgalan, B., Saslafsky, A., Wojtowicz, D., & Przytycka, T. M. (2022). Mutational Signatures as Sensors of Environmental Exposures: Analysis of Smoking-Induced Lung Tissue Remodeling. Biomolecules, 12(10). https://doi.org/10.3390/biom12101384

Liu, Y., Ramot, Y., Torrelo, A., Paller, A. S., Si, N., Babay, S., Kim, P. W., Sheikh, A., Lee, C. C. R., Chen, Y., Vera, A., Zhang, X., Goldbach-Mansky, R., & Zlotogorski, A. (2012). Mutations in proteasome subunit ? type 8 cause chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature with evidence of genetic and phenotypic heterogeneity. Arthritis and Rheumatism, 64(3), 895–907. https://doi.org/10.1002/art.33368

Ma’ruf, M., Fadli, J. C., Mahendra, M. R., Irham, L. M., Sulistyani, N., Adikusuma, W., Chong, R., & Septama, A. W. (2023). A bioinformatic approach to identify pathogenic variants for Stevens-Johnson syndrome. Genomics and Informatics, 21(2). https://doi.org/10.5808/gi.23010

Ou, W.-T., Wan, Q.-X., Wu, Y.-B., Sun, X., Li, Y.-L., Tang, D., Zhang, J., Li, S.-S., Wang, N.-Y., Liu, Z.-L., & Wu, J.-J. (2024). Long Noncoding RNA PSMB8-AS1 Mediates the Tobacco-Carcinogen-Induced Transformation of a Human Bronchial Epithelial Cell Line by Regulating Cell Cycle. Chemical Research in Toxicology, 37(6), 957–967. https://doi.org/10.1021/acs.chemrestox.4c00025

Pendergrass, S. A., Dudek, S. M., Crawford, D. C., & Ritchie, M. D. (2012). Visually integrating and exploring high throughput Phenome-Wide Association Study (PheWAS) results using PheWAS-View. BioData Mining, 5(1). https://doi.org/10.1186/1756-0381-5-5

Poole, J. A., Zamora-Sifuentes, J. L., De las Vecillas, L., & Quirce, S. (2024). Respiratory Diseases Associated With Organic Dust Exposure. Journal of Allergy and Clinical Immunology: In Practice, 12(8), 1960–1971. https://doi.org/10.1016/j.jaip.2024.02.022

Qureshi, R. (2020). Personalized drug-response prediction model for lung cancer patients using machine learning Personalized drug-response prediction model for lung cancer Personalized drug-response prediction model for lung cancer patients using machine learning patients using machine learning. TechRxiv. https://doi.org/10.36227/techrxiv.13273319.v1

Santri, I. N., Irham, L. M., Djalilah, G. N., Perwitasari, D. A., Wardani, Y., Phiri, Y. V. A., & Adikusuma, W. (2022). Identification of Hub Genes and Potential Biomarkers for Childhood Asthma by Utilizing an Established Bioinformatic Analysis Approach. Biomedicines, 10(9). https://doi.org/10.3390/biomedicines10092311

Shamilov, R., & Aneskievich, B. J. (2018). TNIP1 in autoimmune diseases: Regulation of toll-like receptor signaling. Journal of Immunology Research, 2018. https://doi.org/10.1155/2018/3491269

Tripathi, S. C., Peters, H. L., Taguchi, A., Katayama, H., Wang, H., Momin, A., Jolly, M. K., Celiktas, M., Rodriguez-Canales, J., Liu, H., Behrens, C., Wistuba, I. I., Ben-Jacob, E., Levine, H., Molldrem, J. J., Hanash, S. M., & Ostrin, E. J. (2016). Immunoproteasome deficiency is a feature of non-small cell lung cancer with a mesenchymal phenotype and is associated with a poor outcome. Proceedings of the National Academy of Sciences of the United States of America, 113(11), E1555–E1564. https://doi.org/10.1073/pnas.1521812113

Valavanidis, A., Vlachogianni, T., & Fiotakis, K. (2009). Tobacco smoke: Involvement of reactive oxygen species and stable free radicals in mechanisms of oxidative damage, carcinogenesis and synergistic effects with other respirable particles. International Journal of Environmental Research and Public Health, 6(2), 445–462. https://doi.org/10.3390/ijerph6020445

Victoni, T., Barreto, E., Lagente, V., & Carvalho, V. F. (2021). Oxidative Imbalance as a Crucial Factor in Inflammatory Lung Diseases: Could Antioxidant Treatment Constitute a New Therapeutic Strategy? In Oxidative Medicine and Cellular Longevity (Vol. 2021). Hindawi Limited. https://doi.org/10.1155/2021/6646923

Xie, T., Guangyu, F., Liling, H., Ning, L., Xiaohong, H., Puyuan, X., & and Shi, Y. (2022). Analysis on methylation and expression of PSMB8 and its correlation with immunity and immunotherapy in lung adenocarcinoma. Epigenomics, 14(22), 1427–1448. https://doi.org/10.2217/epi-2022-0282




DOI: https://doi.org/10.14421/biomedich.2025.142.717-723

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 Muhammad Farid, Ardestya Rastrani, Shaldhan Bayu Yuska



Biology, Medicine, & Natural Product Chemistry
ISSN 2089-6514 (paper) - ISSN 2540-9328 (online)
Published by Sunan Kalijaga State Islamic University & Society for Indonesian Biodiversity.

CC BY NC
This work is licensed under a CC BY-NC