Antimicrobial Properties of Endophytic Fungal Culture Filtrates from Tinospora crispa

Oktira Roka Aji, Karomah Indah Fitria, Naresh Wari Mega Vianingtyas, Adelyanty Pangestuty Wicaksono

Abstract


Endophytic fungi can produce bioactive compounds that are useful as antimicrobials. This study evaluates the antimicrobial potential of culture filtrate extracts derived from endophytic fungi isolated from the medicinal plant Tinospora crispa. Isolation was carried out from the roots, leaves, and stems of T. crispa, which were then identified based on the ITS gene. The culture filtrate was extracted using ethyl acetate and assessed for antimicrobial activity using the disc diffusion method against Escherichia coli, Staphylococcus aureus, and Candida albicans. A total of 3 endophytic fungal isolates were isolated and identified as Acrocalymma vagum, Diaporthe tulliensis, and Colletotrichum truncatum. The results showed that all culture filtrate extracts of the fungal endophyte isolates exhibited varying antimicrobial activity, with the highest antibacterial activity demonstrated by C. truncatum isolates against Escherichia coli and Staphylococcus aureus. The most significant anticandida activity was by D. tulliensis isolates. Endophytic fungi of medicinal plant T. crispa can be developed as a source of antimicrobial agents, especially to overcome the increasing antibiotics resistance.


Keywords


Antimicrobial; Culture filtrate extract; Endophytic fungi; Tinospora crispa

Full Text:

PDF

References


Abramczyk, B., Marzec-Grz?dziel, A., Grz?dziel, J., Król, E., Ga??zka, A., & Oleszek, W. (2022). Biocontrol Potential and Catabolic Profile of Endophytic Diaporthe eres Strain 1420S from Prunus domestica L. in Poland—A Preliminary Study. Agronomy, 12(1), 165. https://doi.org/10.3390/agronomy12010165

Ahmad, W., Jantan, I., & Bukhari, S. N. A. (2016). Tinospora crispa (L.) Hook. f. & Thomson: A Review of Its Ethnobotanical, Phytochemical, and Pharmacological Aspects. Frontiers in Pharmacology, 7. https://doi.org/10.3389/fphar.2016.00059

An, C., Ma, S., Shi, X., Xue, W., Liu, C., & Ding, H. (2020). Diversity and Antimicrobial Activity of Endophytic Fungi Isolated from Chloranthus japonicus Sieb in Qinling Mountains, China. International Journal of Molecular Sciences, 21(17), 5958. https://doi.org/10.3390/ijms21175958

Baron, N. C., & Rigobelo, E. C. (2022). Endophytic fungi: a tool for plant growth promotion and sustainable agriculture. Mycology, 13(1), 39–55. https://doi.org/10.1080/21501203.2021.1945699

Baz, A. M., Elwy, E., Ahmed, W. A., & El-Sayed, H. (2024). Metabolic profiling, antimicrobial, anticancer, and in vitro and in silico immunomodulatory investigation of Aspergillus niger OR730979 isolated from the Western Desert, Egypt. International Microbiology, 27(6), 1677–1691. https://doi.org/10.1007/s10123-024-00503-z

Caruso, D. J., Palombo, E. A., Moulton, S. E., & Zaferanloo, B. (2022). Exploring the Promise of Endophytic Fungi: A Review of Novel Antimicrobial Compounds. Microorganisms, 10(10), 1990. https://doi.org/10.3390/microorganisms10101990

Choi, U., & Lee, C.-R. (2019). Antimicrobial Agents That Inhibit the Outer Membrane Assembly Machines of Gram-Negative Bacteria. Journal of Microbiology and Biotechnology, 29(1), 1–10. https://doi.org/10.4014/jmb.1804.03051

Fathoni, A., Hudiyono, S., Budianto, E., Cahyana, A. H., & Agusta, A. (2021). Metabolite Detection and Antibacterial Activity of Fungal Endophytic Extracts Isolated from Brotowali (Tinospora crispa) Plants using TLC-Bioautography Assay. IOP Conference Series: Materials Science and Engineering, 1011(1), 012041. https://doi.org/10.1088/1757-899X/1011/1/012041

Fathoni, A., Hudiyono, S., Budianto, E., Cahyana, A. H., Ilyas, M., & Agusta, A. (2022). Evaluation of Antibacterial Activity, Total Phenolic and Flavonoid Contents of Extracts of Endophytic Fungi Associated with Tinospora crispa (L.) Hook. f. & Thomson. International Journal on Advanced Science, Engineering and Information Technology, 12(5), 1728–1735. https://doi.org/10.18517/ijaseit.12.5.14816

Fathoni, A., Hudiyono, S., Cahyana, A. H., Ilyas, M., Purnaningsih, I., & Agusta, A. (2023). Anticandidal and antioxidant potencies of endophytic fungi associated with Tinospora crispa. Biodiversitas Journal of Biological Diversity, 24(5). https://doi.org/10.13057/biodiv/d240506

Fite, T., Kebede, E., Tefera, T., & Bekeko, Z. (2023). Endophytic fungi: versatile partners for pest biocontrol, growth promotion, and climate change resilience in plants. Frontiers in Sustainable Food Systems, 7. https://doi.org/10.3389/fsufs.2023.1322861

Gurgel, R. S., de Melo Pereira, D. Í., Garcia, A. V. F., Fernandes de Souza, A. T., Mendes da Silva, T., de Andrade, C. P., Lima da Silva, W., Nunez, C. V., Fantin, C., de Lima Procópio, R. E., & Albuquerque, P. M. (2023). Antimicrobial and Antioxidant Activities of Endophytic Fungi Associated with Arrabidaea chica (Bignoniaceae). Journal of Fungi, 9(8), 864. https://doi.org/10.3390/jof9080864

Hashem, A. H., Attia, M. S., Kandil, E. K., Fawzi, M. M., Abdelrahman, A. S., Khader, M. S., Khodaira, M. A., Emam, A. E., Goma, M. A., & Abdelaziz, A. M. (2023). Bioactive compounds and biomedical applications of endophytic fungi: a recent review. Microbial Cell Factories, 22(1), 107. https://doi.org/10.1186/s12934-023-02118-x

Hilário, S., & Gonçalves, M. F. M. (2022). Endophytic Diaporthe as Promising Leads for the Development of Biopesticides and Biofertilizers for a Sustainable Agriculture. Microorganisms, 10(12), 2453. https://doi.org/10.3390/microorganisms10122453

Li, Q., Lin, F., & Su, Z. (2025). Endophytic fungi—Big player in plant-microbe symbiosis. Current Plant Biology, 42, 100481. https://doi.org/10.1016/j.cpb.2025.100481

Morales-Vargas, A. T., López-Ramírez, V., Álvarez-Mejía, C., & Vázquez-Martínez, J. (2024). Endophytic Fungi for Crops Adaptation to Abiotic Stresses. Microorganisms, 12(7), 1357. https://doi.org/10.3390/microorganisms12071357

Nguyen, B. V. G., Tran, L. X. T., Ha-Nguyen, A.-T., Le, M.-T., Vo, T.-H., Vu, G. P., & Nguyen, P.-V. (2025). Endophytic fungi isolated from Vietnamese nut grass (Cyperus rotundus L. Cyperaceae) – A promising solution to mitigate the prime phenomenon of antibiotic resistance. Heliyon, 11(3), e41920. https://doi.org/10.1016/j.heliyon.2025.e41920

Riga, R., Oktria, W., Putra, A., Suryelita, S., Agusta, A. L., Suryani, O., Etika, S. B., Fitri, B. Y., Mulia, M., Nasra, E., Kurniawati, D., Arif, K., & Agustini, D. M. (2025). Sesquiterpenoid isolated from Colletotrichum truncatum derived from Gynura japonica : isolation, structure elucidation, and biological activity. Natural Product Research, 1–8. https://doi.org/10.1080/14786419.2025.2478296

Shree, J. A., & Krishnaveni, C. (2023). Phytochemical Screening, Antioxidant and Antimicrobial Activity of the Ethanolic leaf Extract of Tinospora crispa (L.) Miers [Menispermaceae]. Asian Journal of Biological and Life Sciences, 11(3), 712–718. https://doi.org/10.5530/ajbls.2022.11.94

Tong, W. Y., Leong, C. R., Tan, W. N., Khairuddean, M., Zakaria, L., & Ibrahim, D. (2017). Endophytic Diaporthe sp. ED2 Produces a Novel Anti-Candidal Ketone Derivative. Journal of Microbiology and Biotechnology, 27(6), 1065–1070. https://doi.org/10.4014/jmb.1612.12009

Wen, J., Okyere, S. K., Wang, J., Huang, R., Wang, Y., Liu, L., Nong, X., & Hu, Y. (2023). Endophytic Fungi Isolated from Ageratina adenophora Exhibits Potential Antimicrobial Activity against Multidrug-Resistant Staphylococcus aureus. Plants, 12(3), 650. https://doi.org/10.3390/plants12030650

Wen, J., Okyere, S. K., Wang, S., Wang, J., Xie, L., Ran, Y., & Hu, Y. (2022). Endophytic Fungi: An Effective Alternative Source of Plant-Derived Bioactive Compounds for Pharmacological Studies. Journal of Fungi, 8(2), 205. https://doi.org/10.3390/jof8020205

Widjajanti, H., Handayani, C. V., & Nurnawati, E. (2021). Antibacterial Activity of Endophytic Fungi from Sembukan (Paederia foetida L.) Leaves. Science and Technology Indonesia, 6(3), 189–195. https://doi.org/10.26554/sti.2021.6.3.189-195

Yansombat, J., Samosornsuk, S., Khattiyawech, C., Hematulin, P., Pharamat, T., Kabir, S. L., & Samosornsuk, W. (2023). Colletotrichum truncatum, an endophytic fungus derived from Musa acuminata (AAA group): antifungal activity against Aspergillus isolated from COVID-19 patients and indole-3-acetic acid (IAA) production. Asian-Australasian Journal of Bioscience and Biotechnology, 8(2), 23–29. https://doi.org/10.3329/aajbb.v8i2.66927

Yedukondalu, N., Arora, P., Wadhwa, B., Malik, F. A., Vishwakarma, R. A., Gupta, V. K., Riyaz-Ul-Hassan, S., & Ali, A. (2017). Diapolic acid A–B from an endophytic fungus, Diaporthe terebinthifolii depicting antimicrobial and cytotoxic activity. The Journal of Antibiotics, 70(2), 212–215. https://doi.org/10.1038/ja.2016.109




DOI: https://doi.org/10.14421/biomedich.2025.142.635-640

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 Oktira Roka Aji, Karomah Indah Fitria, Naresh Wari Mega Vianingtyas, Adelyanty Pangestuty Wicaksono



Biology, Medicine, & Natural Product Chemistry
ISSN 2089-6514 (paper) - ISSN 2540-9328 (online)
Published by Sunan Kalijaga State Islamic University & Society for Indonesian Biodiversity.

CC BY NC
This work is licensed under a CC BY-NC