Antimicrobial Properties of Endophytic Fungal Culture Filtrates from Tinospora crispa
Abstract
Endophytic fungi can produce bioactive compounds that are useful as antimicrobials. This study evaluates the antimicrobial potential of culture filtrate extracts derived from endophytic fungi isolated from the medicinal plant Tinospora crispa. Isolation was carried out from the roots, leaves, and stems of T. crispa, which were then identified based on the ITS gene. The culture filtrate was extracted using ethyl acetate and assessed for antimicrobial activity using the disc diffusion method against Escherichia coli, Staphylococcus aureus, and Candida albicans. A total of 3 endophytic fungal isolates were isolated and identified as Acrocalymma vagum, Diaporthe tulliensis, and Colletotrichum truncatum. The results showed that all culture filtrate extracts of the fungal endophyte isolates exhibited varying antimicrobial activity, with the highest antibacterial activity demonstrated by C. truncatum isolates against Escherichia coli and Staphylococcus aureus. The most significant anticandida activity was by D. tulliensis isolates. Endophytic fungi of medicinal plant T. crispa can be developed as a source of antimicrobial agents, especially to overcome the increasing antibiotics resistance.
Keywords
Full Text:
PDFReferences
Abramczyk, B., Marzec-Grz?dziel, A., Grz?dziel, J., Król, E., Ga??zka, A., & Oleszek, W. (2022). Biocontrol Potential and Catabolic Profile of Endophytic Diaporthe eres Strain 1420S from Prunus domestica L. in Poland—A Preliminary Study. Agronomy, 12(1), 165. https://doi.org/10.3390/agronomy12010165
Ahmad, W., Jantan, I., & Bukhari, S. N. A. (2016). Tinospora crispa (L.) Hook. f. & Thomson: A Review of Its Ethnobotanical, Phytochemical, and Pharmacological Aspects. Frontiers in Pharmacology, 7. https://doi.org/10.3389/fphar.2016.00059
An, C., Ma, S., Shi, X., Xue, W., Liu, C., & Ding, H. (2020). Diversity and Antimicrobial Activity of Endophytic Fungi Isolated from Chloranthus japonicus Sieb in Qinling Mountains, China. International Journal of Molecular Sciences, 21(17), 5958. https://doi.org/10.3390/ijms21175958
Baron, N. C., & Rigobelo, E. C. (2022). Endophytic fungi: a tool for plant growth promotion and sustainable agriculture. Mycology, 13(1), 39–55. https://doi.org/10.1080/21501203.2021.1945699
Baz, A. M., Elwy, E., Ahmed, W. A., & El-Sayed, H. (2024). Metabolic profiling, antimicrobial, anticancer, and in vitro and in silico immunomodulatory investigation of Aspergillus niger OR730979 isolated from the Western Desert, Egypt. International Microbiology, 27(6), 1677–1691. https://doi.org/10.1007/s10123-024-00503-z
Caruso, D. J., Palombo, E. A., Moulton, S. E., & Zaferanloo, B. (2022). Exploring the Promise of Endophytic Fungi: A Review of Novel Antimicrobial Compounds. Microorganisms, 10(10), 1990. https://doi.org/10.3390/microorganisms10101990
Choi, U., & Lee, C.-R. (2019). Antimicrobial Agents That Inhibit the Outer Membrane Assembly Machines of Gram-Negative Bacteria. Journal of Microbiology and Biotechnology, 29(1), 1–10. https://doi.org/10.4014/jmb.1804.03051
Fathoni, A., Hudiyono, S., Budianto, E., Cahyana, A. H., & Agusta, A. (2021). Metabolite Detection and Antibacterial Activity of Fungal Endophytic Extracts Isolated from Brotowali (Tinospora crispa) Plants using TLC-Bioautography Assay. IOP Conference Series: Materials Science and Engineering, 1011(1), 012041. https://doi.org/10.1088/1757-899X/1011/1/012041
Fathoni, A., Hudiyono, S., Budianto, E., Cahyana, A. H., Ilyas, M., & Agusta, A. (2022). Evaluation of Antibacterial Activity, Total Phenolic and Flavonoid Contents of Extracts of Endophytic Fungi Associated with Tinospora crispa (L.) Hook. f. & Thomson. International Journal on Advanced Science, Engineering and Information Technology, 12(5), 1728–1735. https://doi.org/10.18517/ijaseit.12.5.14816
Fathoni, A., Hudiyono, S., Cahyana, A. H., Ilyas, M., Purnaningsih, I., & Agusta, A. (2023). Anticandidal and antioxidant potencies of endophytic fungi associated with Tinospora crispa. Biodiversitas Journal of Biological Diversity, 24(5). https://doi.org/10.13057/biodiv/d240506
Fite, T., Kebede, E., Tefera, T., & Bekeko, Z. (2023). Endophytic fungi: versatile partners for pest biocontrol, growth promotion, and climate change resilience in plants. Frontiers in Sustainable Food Systems, 7. https://doi.org/10.3389/fsufs.2023.1322861
Gurgel, R. S., de Melo Pereira, D. Í., Garcia, A. V. F., Fernandes de Souza, A. T., Mendes da Silva, T., de Andrade, C. P., Lima da Silva, W., Nunez, C. V., Fantin, C., de Lima Procópio, R. E., & Albuquerque, P. M. (2023). Antimicrobial and Antioxidant Activities of Endophytic Fungi Associated with Arrabidaea chica (Bignoniaceae). Journal of Fungi, 9(8), 864. https://doi.org/10.3390/jof9080864
Hashem, A. H., Attia, M. S., Kandil, E. K., Fawzi, M. M., Abdelrahman, A. S., Khader, M. S., Khodaira, M. A., Emam, A. E., Goma, M. A., & Abdelaziz, A. M. (2023). Bioactive compounds and biomedical applications of endophytic fungi: a recent review. Microbial Cell Factories, 22(1), 107. https://doi.org/10.1186/s12934-023-02118-x
Hilário, S., & Gonçalves, M. F. M. (2022). Endophytic Diaporthe as Promising Leads for the Development of Biopesticides and Biofertilizers for a Sustainable Agriculture. Microorganisms, 10(12), 2453. https://doi.org/10.3390/microorganisms10122453
Li, Q., Lin, F., & Su, Z. (2025). Endophytic fungi—Big player in plant-microbe symbiosis. Current Plant Biology, 42, 100481. https://doi.org/10.1016/j.cpb.2025.100481
Morales-Vargas, A. T., López-Ramírez, V., Álvarez-Mejía, C., & Vázquez-Martínez, J. (2024). Endophytic Fungi for Crops Adaptation to Abiotic Stresses. Microorganisms, 12(7), 1357. https://doi.org/10.3390/microorganisms12071357
Nguyen, B. V. G., Tran, L. X. T., Ha-Nguyen, A.-T., Le, M.-T., Vo, T.-H., Vu, G. P., & Nguyen, P.-V. (2025). Endophytic fungi isolated from Vietnamese nut grass (Cyperus rotundus L. Cyperaceae) – A promising solution to mitigate the prime phenomenon of antibiotic resistance. Heliyon, 11(3), e41920. https://doi.org/10.1016/j.heliyon.2025.e41920
Riga, R., Oktria, W., Putra, A., Suryelita, S., Agusta, A. L., Suryani, O., Etika, S. B., Fitri, B. Y., Mulia, M., Nasra, E., Kurniawati, D., Arif, K., & Agustini, D. M. (2025). Sesquiterpenoid isolated from Colletotrichum truncatum derived from Gynura japonica : isolation, structure elucidation, and biological activity. Natural Product Research, 1–8. https://doi.org/10.1080/14786419.2025.2478296
Shree, J. A., & Krishnaveni, C. (2023). Phytochemical Screening, Antioxidant and Antimicrobial Activity of the Ethanolic leaf Extract of Tinospora crispa (L.) Miers [Menispermaceae]. Asian Journal of Biological and Life Sciences, 11(3), 712–718. https://doi.org/10.5530/ajbls.2022.11.94
Tong, W. Y., Leong, C. R., Tan, W. N., Khairuddean, M., Zakaria, L., & Ibrahim, D. (2017). Endophytic Diaporthe sp. ED2 Produces a Novel Anti-Candidal Ketone Derivative. Journal of Microbiology and Biotechnology, 27(6), 1065–1070. https://doi.org/10.4014/jmb.1612.12009
Wen, J., Okyere, S. K., Wang, J., Huang, R., Wang, Y., Liu, L., Nong, X., & Hu, Y. (2023). Endophytic Fungi Isolated from Ageratina adenophora Exhibits Potential Antimicrobial Activity against Multidrug-Resistant Staphylococcus aureus. Plants, 12(3), 650. https://doi.org/10.3390/plants12030650
Wen, J., Okyere, S. K., Wang, S., Wang, J., Xie, L., Ran, Y., & Hu, Y. (2022). Endophytic Fungi: An Effective Alternative Source of Plant-Derived Bioactive Compounds for Pharmacological Studies. Journal of Fungi, 8(2), 205. https://doi.org/10.3390/jof8020205
Widjajanti, H., Handayani, C. V., & Nurnawati, E. (2021). Antibacterial Activity of Endophytic Fungi from Sembukan (Paederia foetida L.) Leaves. Science and Technology Indonesia, 6(3), 189–195. https://doi.org/10.26554/sti.2021.6.3.189-195
Yansombat, J., Samosornsuk, S., Khattiyawech, C., Hematulin, P., Pharamat, T., Kabir, S. L., & Samosornsuk, W. (2023). Colletotrichum truncatum, an endophytic fungus derived from Musa acuminata (AAA group): antifungal activity against Aspergillus isolated from COVID-19 patients and indole-3-acetic acid (IAA) production. Asian-Australasian Journal of Bioscience and Biotechnology, 8(2), 23–29. https://doi.org/10.3329/aajbb.v8i2.66927
Yedukondalu, N., Arora, P., Wadhwa, B., Malik, F. A., Vishwakarma, R. A., Gupta, V. K., Riyaz-Ul-Hassan, S., & Ali, A. (2017). Diapolic acid A–B from an endophytic fungus, Diaporthe terebinthifolii depicting antimicrobial and cytotoxic activity. The Journal of Antibiotics, 70(2), 212–215. https://doi.org/10.1038/ja.2016.109
DOI: https://doi.org/10.14421/biomedich.2025.142.635-640
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Oktira Roka Aji, Karomah Indah Fitria, Naresh Wari Mega Vianingtyas, Adelyanty Pangestuty Wicaksono
Biology, Medicine, & Natural Product Chemistry |