Proximate Analysis and Chemical Constituents of Psychotria latistipula Benth. (Rubiaceae) Leaves

Samuel Akinniyi Odewo, Olayombo Margaret Banwo

Abstract


Psychotria latistipula Benth. (Rubiaceae), a traditional Nigerian medicinal plant recognised for its effectiveness in treating cancer, tumours, bronchial and gastrointestinal disorders was investigated for its chemical constituents by Gas Chromatography-Mass Spectrometry (GC-MS) technique; also, proximate analysis was done to determine the composition of moisture, crude protein, crude fiber, fat, carbohydrate, and ash contents, which had not been previously reported. P. latistipula leaves were extracted by maceration using acetone and hexane (1:1). The proximate analysis indicated that the leaves of P. latistipula contain moisture, crude protein, crude fiber, fat, carbohydrate, and ash contents of 8.91±0.14, 12.43±0.05, 20.78±0.66, 2.28±0.06, 50.34±0.79, and 5.27±0.16%, respectively, demonstrating a notably high carbohydrate content. The GC-MS identified twenty-eight compounds, making up 93.08% of the total. The dominant classes of these compounds included fatty acid esters, saturated fatty acids, fatty acid methyl esters, and unsaturated fatty acid aldehydes accounting for 19.27%, 18.71%, 13.77% and 13.36% of the total, respectively. Octadecanoic acid (14.03%) was the major compound in P. latistipula leaves acetone-hexane extract. Notably, Octadecanoic acid is known for its potential anti-inflammatory, anticancer and antioxidant properties, which indicates P. latistipula could serve as an anti-inflammatory, antioxidant and anticancer agents further justifying its ethnomedicinal use.


Keywords


Fatty acid esters; GC-MS; Octadecanoic acid; P. latistipula; Rubiaceae; Secondary metabolites

Full Text:

PDF

References


Adegbaju, O. D., Otunola, G. A., & Afolayan, A. J. (2019). Proximate, mineral, vitamin and anti-nutrient content of Celosia argentea at three stages of maturity. South African Journal of Botany, 124, 372-379. doi:https://doi.org/10.1016/j.sajb.2019.05.036.

Akpuaka, A., Ekwenchi, M. M., Dashak, D. A., & Dildar, A. (2013). Biological activities of characterized isolates of n-hexane extract of Azadirachta indica A. Juss (Neem) leaves. Nature and science, 11(5), 141-147.

Alabi, K. A., Lajide, L., & Owolabi, B. J. (2018). Biological activity of oleic acid and its primary amide: Experimental and Computational studies. Journal of Chemical Society of Nigeria, 43(2), 9-18.

Ansari, P., Reberio, A. D., Ansari, N. J., Kumar, S., Khan, J. T., Chowdhury, S., Abd El-Mordy, F.M., Hannan, J.M.A., Flatt, P.R., Abdel-Wahab, Y.H. & Seidel, V. (2025). Therapeutic Potential of Medicinal Plants and Their Phytoconstituents in Diabetes, Cancer, Infections, Cardiovascular Diseases, Inflammation and Gastrointestinal Disorders. Biomedicines, 13(2), 454. doi:https://doi.org/10.3390/biomedicines13020454.

AOAC (Association of Official Analytical Chemist), (2016). Official Methods of Analysis. In: Latimer Jr. GW, editor. 20th ed. Washinton DC: AOAC International. ISBN 0935584870.

Atni, O. K., Munir, E., & Pasaribu, N. (2024). Diversity of bioactive compounds from Parmotrema xanthinum as antimicrobial potential through in-vitro and in-silico assessment. Biodiversitas Journal of Biological Diversity, 25(11). doi: https://doi.org/10.13057/biodiv/d251143.

Aureada, M. K., Duran, D. J., Falcatan, S. R. A., Pornillos, K. M. T., Villanueva, M. A. G., Ordas, J. A. D., & Tan, M. A. (2023). Corelation of total phenolic and flavonoid contents on the antioxidant activity of Psychortia gitigensis and Psychotria pilosella. Journal of Phytology, 15, 110-115. doi:https://doi.org/ 10.25081/jp.2023.v15.8545.

Balasundari, T., & Boominathan, M. (2018). Screening of bioactive compounds by GC-MS, antimicrobial activity and in silico studies in Cynodon dactylon L. Pers leaves. World Journal of Science and Research, 3(1), 07-15.

Burkill, H.M (1985). The Useful Plants of West Tropical Africa; Royal Botanic Gardens Kew: Kent, UK; Volume 4.

Chaachouay, N., & Zidane, L. (2024). Plant-derived natural products: a source for drug discovery and development. Drugs and Drug Candidates, 3(1), 184-207. doi: https://doi.org/10.3390/ddc3010011.

Duke, J. A. (2016). Dr. Duke’s Phytochemical and Ethnobotanical Databases – USDA https://phytochem.nal.usda.gov/phytochem/search. pp. 1.

Elufioye, T. O., Chinaka, C. G., & Oyedeji, A. O. (2019). Antioxidant and anticholinesterase activities of Macrosphyra longistyla (DC) Hiern relevant in the management of Alzheimer’s Disease. Antioxidants, 8(9), 400. doi:https://doi.org/10.3390/antiox8090400.

Endris, Y. A., Abdu, K. Y., & Abate, S. G. (2024). Investigation of bioactive phytochemical compounds of the Ethiopian medicinal plant using GC-MS and FTIR. Heliyon, 10(15). doi:https://doi.org/10.1016/j.heliyon.2024.e34687.

Gonzalez-Rivera, M. L., Barragan-Galvez, J. C., Gasca-Martínez, D., Hidalgo-Figueroa, S., Isiordia-Espinoza, M., & Alonso-Castro, A. J. (2023). In vivo neuropharmacological effects of neophytadiene. Molecules, 28(8), 3457. doi:https://doi.org/10.3390/molecules28083457.

James, S., Oloyede, O. O., Ocheme, O. B., Chinma, C. E., & Agbejule, A. Y. (2015). Proximate, anti-nutrient and sensory properties of ogi, a millet based gruel supplemented with treated African oil bean (Pentaclethra macrophylla Benth.) seed flour. African Journal of Food Science, 9(3), 136-141. doi:https://doi.org/10.5897/AJFS2014.1249.

Mangrove-Abayomi, O. E., Kenneth, E., & Mkaparu, K. I. (2014). Chemometric profiling of methanolic leaf extract of Cinddoscolus aconitifoliuus (Euphorbiaceae) using UV-VIS, FTIR and GC-MS techniques. Peak journal of Medicinal Plant Research, 2(1), 6-12.

Mohamad, S. N. A. S., Khatib, A., Soád, S. Z. M., Ahmed, Q. U., & Ibrahim, Z. (2025). Ethnopharmacology of Psychotria: Potential Use of P. malayana Jack Leaves as Antidiabetic Agent. Journal of Pharmacy, 5(1), 156-169. doi: https://doi.org/10.31436/jop.v5i1.341.

Ngnokam Jouogo, D. C., Tamokou, J. D. D., Teponno, R. B., Matsuete-Takongmo, G., Voutquenne-Nazabadioko, L., Tapondjou, L. A., & Ngnokam, D. (2022). Chemotaxonomy and antibacterial activity of the extracts and chemical constituents of Psychotria succulenta Hiern.(Rubiaceae). BioMed Research International, 2022(1), 7856305. doi:https://doi.org/10.1155/2022/7856305.

Okunlola, G. O., Jimoh, M. A., Olatunji, O. A., Rufai, A. B., & Omidiran, A. O. (2019). Proximate analysis, mineral composition, and antioxidant properties of bitter leaf and scent leaf. International journal of vegetable science, 25(4), 346-354. doi:https://doi.org/10.1080/19315260.2018.1515141.

Plant of the World Online (POWO): Royal Botanical Gaden Kew Science. Psychotria latistipula Benth. Available online: https://powo.science.kew.org (accessed on 27 April, 2025).

Ramadan, A. M. A. A., Zidan, S. A. H., Shehata, R. M., El-Sheikh, H. H., Ameen, F., Stephenson, S. L., & Al-Bedak, O. A. H. M. (2024). Antioxidant, antibacterial, and molecular docking of methyl ferulate and oleic acid produced by Aspergillus pseudodeflectus AUMC 15761 utilizing wheat bran. Scientific Reports, 14(1), 3183. doi:https://doi.org/10.1038/s41598-024-52045-z.

Ranjan, S., Chaitali, R. O. Y., & Sinha, S. K. (2023). Gas chromatography–mass spectrometry (GC-MS): a comprehensive review of synergistic combinations and their applications in the past two decades. Journal of Analytical Sciences and Applied Biotechnology, 5(2), 72-85. doi: https://doi.org/10.48402/IMIST.PRSM/jasab-v5i2.40209.

Riaz, M., Khalid, R., Afzal, M., Anjum, F., Fatima, H., Zia, S., Zia, S., Rasool, G., Egbuna, C., Mtewa, A.G., Uche, C.Z. & Aslam, M. A. (2023). Phytobioactive compounds as therapeutic agents for human diseases: A review. Food science & nutrition, 11(6), 2500-2529. doi:https://doi.org/10.1002/fsn3.3308.

Sangeetha, M., & Banurekha, J. (2020). Psychotria-an overview. Research Journal of Pharmacy and Technology, 13(11), 5484-5488. doi:https://doi.org/10.5958/0974-360X.2020.00957.9.

Selmy, A. H., Hegazy, M. M., El-Hela, A. A., Saleh, A. M., & El-Hamouly, M. M. (2023). In Vitro and in Silico studies of Neophytadiene; A Diterpene Isolated From Aeschynomene Elaphroxylon (Guill. &Perr.) Taub. as Apoptotic Inducer. Egyptian Journal of Chemistry, 66(10), 149-161. doi:https://doi.org/10.21608/ejchem.2023.178261.7296.

Selvi, S. V., & Basker, A. (2012). Phytochemical analysis and GC-MS profiling in the leaves of Sauropus androgynus (L.) MERR. International Journal of Drug Development and Research, 4(1), 162-167.

Sheela, D., & Uthayakumari, F. (2013). GC-MS analysis of bioactive constituents from coastal sand dune taxon-Sesuvium portulacastrum (L.). Bioscience discovery, 4(1), 47-53.

Singh, S., Nair, V., Jain, S., & Gupta, Y. K. (2008). Evaluation of anti-inflammatory activity of plant lipids containing?–linolenic acid. Indian Journal of Experimental Biology, 46(6), 453-456.

Takuma, S., Adabara, S. A., & Kabo, K. S. (2025). Gas Chromatography-Mass Spectrometry (GC-MS) Analysis of Some Plants Extract. Communication In Physical Sciences, 12(2). doi:https://doi.org/10.4314/awfqtk05.




DOI: https://doi.org/10.14421/biomedich.2025.142.655-662

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 Samuel Akinniyi Odewo, Olayombo Margaret Banwo



Biology, Medicine, & Natural Product Chemistry
ISSN 2089-6514 (paper) - ISSN 2540-9328 (online)
Published by Sunan Kalijaga State Islamic University & Society for Indonesian Biodiversity.

CC BY NC
This work is licensed under a CC BY-NC