Phytochemical Profile and Antibacterial Activity of Nigella Sativa against Biofilm-producing Bacteria Uropathogens

AbdulAzeez Mumsiri Abaka, Mubarak Muhammad Dahiru, Keta Biman Abubakar, Jordana Luka, Aisha Abubakar, Tukur Baba Abdullahi, Saminu Hamman Barau


This study explores the antibacterial effects of Nigella sativa seeds on bacteria obtained from clinical samples. The aim was to assess the antibacterial properties of both aqueous and methanolic extracts of Nigella sativa seeds against E. coli, S. aureus, and P. aeruginosa. The three samples were collected from the Microbiology Laboratory of Modibbo Adamawa Medical Centre and were reconfirmed using culture, microscopy, and some biochemical tests. The seed samples of N. sativa were procured from herbal point Yola, Adamawa State, Nigeria. The phytochemical assay of the extracts revealed the presence of flavonoids, alkaloids, tannins, phenols, cardiac glycosides, steroids, saponins, and terpenoids in both extracts. The highest antibacterial activity against S. aureus, E. coli, and P. aeruginosa was demonstrated by the aqueous extract of N. sativa seeds, with inhibition zone diameters of 19.30 ±0.61 mm, 8.10 ±2.17 mm, and 12.00 ±0.29 mm, respectively. However, the methanol extract exhibited slightly greater activity against E. coli and P. aeruginosa, with inhibition zone diameters of 12.10 ±0.38 mm and 13.80 ±0.40 mm, respectively. Both methanol and aqueous extracts showed minimum inhibitory concentrations (MICs) of 25 mg/mL against S. aureus and E. coli. Similarly, for P. aeruginosa, the MIC was 25 mg/mL for methanol extract and 50 mg/mL for aqueous extract. The minimum bactericidal concentration (MBC) for both extracts against S. aureus and E. coli was determined to be 25 mg/mL. However, for P. aeruginosa, the MBC was 25 mg/mL for the aqueous extract and 50 mg/mL for the methanol extract. The study indicates that N. sativa seed extract possesses antibacterial properties against S. aureus and P. aeruginosa, underscoring its potential as an effective medicinal antibacterial agent.


Bacteria; Phytochemical; Biofilm; Uropathogens; Nigella sativa

Full Text:



Abdallah, E. M., Alhatlani, B. Y., de Paula Menezes, R., & Martins, C. H. G. (2023). Back to Nature: Medicinal plants as promising sources for antibacterial drugs in the post-antibiotic era. Plants, 12(17), 3077.

Abraham, A. O., Abdulazeez, A. K., Seun, O. O., & Ogonna, D. W. (2019). Antimicrobial activity of N-hexane extract of Nigella sativa against some pathogenic bacteria. Am. J. Biomed. Sci. Res, 6, 430-434.

Ahmed, S., Ahmed, M. Z., Rafique, S., Almasoudi, S. E., Shah, M., Jalil, N. A. C., & Ojha, S. C. (2023). Recent approaches for downplaying antibiotic resistance: molecular mechanisms. BioMed Research International, 2023.

Akram, F., Imtiaz, M., & ul Haq, I. (2023). Emergent crisis of antibiotic resistance: A silent pandemic threat to 21st century. Microbial Pathogenesis, 174, 105923.

Al-Garadi, M. A., Qaid, M. M., Alqhtani, A. H., Pokoo-Aikins, A., & Al-Mufarrej, S. I. (2022). In vitro phytochemical analysis and antibacterial and antifungal efficacy assessment of ethanolic and aqueous extracts of Rumex nervosus leaves against selected bacteria and fungi. Veterinary World, 15(11), 2725.

Al-Khayri, J. M., Rashmi, R., Toppo, V., Chole, P. B., Banadka, A., Sudheer, W. N., ... & Rezk, A. A. S. (2023). Plant secondary metabolites: The weapons for biotic stress management. Metabolites, 13(6), 716.

Arora, P., Garg, M., Gera, T., Vaid, L., Sood, P., Kaur, L., ... & Sahu, S. K. (2024). Antimicrobial Activity of Secondary Metabolites in Medicinal Plants: An Update. In BIO Web of Conferences (Vol. 86, p. 01040). EDP Sciences.

Balogun, S. T., Umar, A. I., Oluwasoji, A. A., Gulani, I., Adebola, O. S., (2019) Antibacterial activity of the aqueous and methanolic seed extract of Nigella sativa LINN. World Journal of Pharmaceutical and Life Science, 2-4.

Chandran, G. R., Dailin, D. J., Manas, N. H. A., El-Ensashy, H. A., Man, M., Edis, Z., ... & Azelee, N. I. W. (2023). Antimicrobial properties of deep-sea water towards escherichia coli and staphylococcus aureus. Journal of Bioprocessing and Biomass Technology, 2(1), 13-17.

Dahiru, M. M., Abaka, A. M., & Artimas, S. P. (2023). Phytochemical Analysis and Antibacterial Activity of Methanol and Ethyl Acetate Extracts of Detarium microcarpum Guill. & Perr. Biology, Medicine, & Natural Product Chemistry, 12(1), 281-288.

Dalli, M., Bekkouch, O., Azizi, S. E., Azghar, A., Gseyra, N., & Kim, B. (2021). Nigella sativa L. phytochemistry and pharmacological activities: A review (2019–2021). Biomolecules, 12(1), 20.

Dar, R. A., Shahnawaz, M., Ahanger, M. A., & Majid, I. (2023). Exploring the diverse bioactive compounds from medicinal plants: a review. J. Phytopharm, 12, 189-195.

Ezzaky, Y., Elmoslih, A., Silva, B. N., Bonilla‐Luque, O. M., Possas, A., Valero, A., ... & Achemchem, F. (2023). In vitro antimicrobial activity of extracts and essential oils of Cinnamomum, Salvia, and Mentha spp. against foodborne pathogens: A meta‐analysis study. Comprehensive Reviews in Food Science and Food Safety, 22(6), 4516-4536.

Hamidi, S. (2023). Assessment of undeclared synthetic drugs in dietary supplements in an analytical view: A comprehensive review. Critical Reviews in Analytical Chemistry, 53(5), 986-996.

Jamal, A. (2023). Embracing nature's therapeutic potential: Herbal medicine. International Journal of Multidisciplinary Sciences and Arts, 2(1), 117-126.

Lefebvre, T., Destandau, E., & Lesellier, E. (2021). Selective extraction of bioactive compounds from plants using recent extraction techniques: A review. Journal of Chromatography A, 1635, 461770.

Lila, A. S. A., Rajab, A. A., Abdallah, M. H., Rizvi, S. M. D., Moin, A., Khafagy, E. S., ... & Hegazy, W. A. (2023). Biofilm lifestyle in recurrent urinary tract infections. Life, 13(1), 148.

Loh, T. P., Cooke, B. R., Markus, C., Zakaria, R., Tran, M. T. C., Ho, C. S., ... & IFCC Working Group on Method Evaluation Protocols. (2023). Method evaluation in the clinical laboratory. Clinical Chemistry and Laboratory Medicine (CCLM), 61(5), 751-758.

Lu, L., Zhao, Y., Li, M., Wang, X., Zhu, J., Liao, L., & Wang, J. (2023). Contemporary strategies and approaches for characterizing composition and enhancing biofilm penetration targeting bacterial extracellular polymeric substances. Journal of Pharmaceutical Analysis.

Maione, A., Galdiero, E., Cirillo, L., Gambino, E., Gallo, M. A., Sasso, F. P., ... & Galdiero, M. (2023). Prevalence, resistance patterns and biofilm production ability of bacterial uropathogens from cases of community-acquired urinary tract infections in South Italy. Pathogens, 12(4), 537.

Moiketsi, B. N., Makale, K. P., Rantong, G., Rahube, T. O., & Makhzoum, A. (2023). Potential of selected African medicinal plants as alternative therapeutics against multi-drug-resistant bacteria. Biomedicines, 11(10), 2605.

Nisar, F., Rasool, S., Khan, M. K., Khan, W., Qaisar, Z., & Akhter, S. (2023). Health Care System of Islam: Physical, Mental and Spiritual Remedies from Islamic Perspective and Public Policy for Administration. Research, 8(2), 83-113.

Ojueromi, O. O., Oboh, G., & Ademosun, A. O. (2022). Black seed (Nigella sativa): a favourable alternative therapy for inflammatory and immune system disorders. Inflammopharmacology, 30(5), 1623-1643.

Pammi, S. S., Suresh, B., & Giri, A. (2023). Antioxidant potential of medicinal plants. Journal of Crop Science and Biotechnology, 26(1), 13-26.

Rauniyar, M. (2023). ANTIMICROBIAL SUSCEPTIBILITY PATTERN OF Escherichia coli ISOLATES OF URINARY TRACT INFECTION FROM PATIENTS VISITING A TERTIARY CARE HOSPITAL OF MORANG, NEPAL (Doctoral dissertation, Department of Microbiology Central Campus of Technology, Dharan, Nepal TU Registration Number: 5-2-0003-0451-2013 2023 Tribhuvan University).

Salam, M. A., Al-Amin, M. Y., Salam, M. T., Pawar, J. S., Akhter, N., Rabaan, A. A., & Alqumber, M. A. (2023, July). Antimicrobial resistance: a growing serious threat for global public health. In Healthcare (Vol. 11, No. 13, p. 1946). MDPI.

Sati, P., Sharma, E., Dhyani, P., Attri, D. C., Rana, R., Kiyekbayeva, L., ... & Sharifi-Rad, J. (2024). Paclitaxel and its semi-synthetic derivatives: comprehensive insights into chemical structure, mechanisms of action, and anticancer properties. European Journal of Medical Research, 29(1), 90.

Saxena, D., Maitra, R., Bormon, R., Czekanska, M., Meiers, J., Titz, A., ... & Chopra, S. (2023). Tackling the outer membrane: facilitating compound entry into Gram-negative bacterial pathogens. npj Antimicrobials and Resistance, 1(1), 17.

Shafodino, F. S., Lusilao, J. M., & Mwapagha, L. M. (2022). Phytochemical characterization and antimicrobial activity of Nigella sativa seeds. PloS one, 17(8), e0272457.

Sharma, R., Bhattu, M., Tripathi, A., Verma, M., Acevedo, R., Kumar, P., ... & Singh, J. (2023). Potential medicinal plants to combat viral infections: A way forward to environmental biotechnology. Environmental Research, 115725.

Sulaiman, A. N., & Muhammad, H. M. (2023). Phytochemical constituents and antibacterial activity of Nigella sativa seeds against some pathogenic bacteria. Microbes and Infectious Diseases.

Usman, M., Kabiru, M., Manga, S., Opaluwa, S., Nataala, S., Garba, M., ... & Bukar, A. (2017). Evaluation of antibacterial activity and phytochemical screening of the crude extract of nigella sativa seeds on the bacterial isolates of wound.

Zhou, Y., Zhou, Z., Zheng, L., Gong, Z., Li, Y., Jin, Y., ... & Chi, M. (2023). Urinary tract infections caused by uropathogenic Escherichia coli: Mechanisms of infection and treatment options. International journal of molecular sciences, 24(13), 10537.



  • There are currently no refbacks.

Copyright (c) 2024 AbdulAzeez Mumsiri Abaka, Mubarak Muhammad Dahiru, Keta Biman Abubakar, Jordana Luka, Aisha Abubakar, Tukur Baba Abdullahi, Saminu Hamman Barau

Biology, Medicine, & Natural Product Chemistry
ISSN 2089-6514 (paper) - ISSN 2540-9328 (online)
Published by Sunan Kalijaga State Islamic University & Society for Indonesian Biodiversity.

This work is licensed under a CC BY-NC