b-Glucan Comparison in the Mushrooms of Medicinal Fungal Species

Dicky Kurniawan Totowiputro, Djanggan Sargowo, Askandar Tjokroprawiro, Muhaimin Rifa'i

Abstract


Agaricus blazei Murill has been known as a mushroom with medicinal properties, such as its efficacy in maintaining the immune system and other metabolic processes. The main polysaccharide found in A. blazei, is b-glucan. This study aims to quantify and compare b-glucan content in A. blazei compared with the medicinal mushrooms Ganoderma sp. and Pleurotus ostreatus. ?-glucan was extracted from each species using an alkaloid extraction method. The b-glucan content was determined using UV-Vis Spectrophotometer at a wavelength of 220 nm. The data showed that A. blazei contained the highest level of b-glucan, 6.99% (w/w), while the other mushrooms contained less than 2 %. This study obtained that A. blazei contain high levels of b-glucan compared with Ganoderma sp. and Pleurotus ostreatus. Thus, A. blazei has the potential as medicine, especially to maintain the balance of the immune system. To keep the body healthy and balance immune system patient can consume Agaricus blazei Muril.

Keywords


Potential medicine; Beta-glucan; Medicinal mushroom; UV-VIS spectrophotometry

Full Text:

PDF

References


Ali, M. M., Baig, M. T., Jabeen, A., Aslam M, Shahid U. (2021). Therapeutic value of medicinal mushroom Agaricus blazei Murill. Pakistan Journal of Medicine and Dentistry, 10(01), 83-89. https://doi.org/10.36283/PJMD10-1/014

Bertollo, A. G., Mingoti, M. E., Plissari, M. E., et al. (2022). Agaricus blazei Murrill Mushroom: A review on the prevention and treatment of cancer. Pharmacological Research - Modern Chinese Medicine, 2, 100032. https://doi.org/10.1016/j.prmcm.2021.100032

Blumfield, M., Abbott, K., Duve, E., Cassettari, T., Marshall, S., & Fayet-Moore F. (2020). Examining the health effects and bioactive components in Agaricus bisporus mushrooms: a scoping review. The Journal of Nutritional Biochemistry, 84, 108453. https://doi.org/10.1016/j.jnutbio.2020.108453

Caseiro, C., Dias, J. N. R., de Andrade Fontes, C. M. G., & Bule, P. (2022). From cancer therapy to winemaking: The molecular structure and applications of β-Glucans and β-1, 3-Glucanases. International Journal of Molecular Sciences, 23(6), 3156. https://doi.org/10.3390/ijms23063156

Cortina-Escribano, M., Pihlava, J. M., Miina, J., Veteli, P., Linnakoski, R., & Vanhanen, H. (2020). Effect of strain, wood substrate and cold treatment on the yield and β-Glucan content of Ganoderma lucidum fruiting bodies. Molecules, 25(20), 4732. https://doi.org/10.3390/molecules25204732.

da Silva Campelo, M., Neto, J. F. C., Lima, A. B. N., et al. (2021). Polysaccharides and extracts from Agaricus brasiliensis Murill - A comprehensive review. International Journal of Biological Macromolecules, 183, 1697-1714. https://doi.org/10.1016/j.ijbiomac.2021.05.112

Elmajdoub, A. A., Awidat, S. K., El-Mahmoudy, A. M. (2017). Anti-inflammatory potential of Agaricus in carrageenan-induced model of local inflammation in rats. International Journal of Basic & Clinical Pharmacology, 4(3), 497-502. https://doi.org/10.18203/2319-2003.ijbcp20150028

Gründemann, C., Reinhardt, J. K., & Lindequist, U. (2020). European medicinal mushrooms: Do they have potential for modern medicine? - An update. Phytomedicine, 66,153131. https://doi.org/10.1016/j.phymed.2019.153131

Han, X., Luo, R., Ye, N., et al. (2022). Research progress on natural β-glucan in intestinal diseases. International Journal of Biological Macromolecules, 219, 1244-1260. https://doi.org/10.1016/j.ijbiomac.2022.08.173

Hetland, G., Tangen, J. M., Mahmood, F., et al. (2020). Antitumor, anti-inflammatory and antiallergic effects of Agaricus blazei mushroom extract and the related medicinal basidiomycetes mushrooms, Hericium erinaceus and Grifolafrondosa: A Review of Preclinical and Clinical Studies. Nutrients, 12(5), 1339. https://doi.org/10.3390/nu12051339

Huang, K., El-Seedi, H. R., & Xu, B. (2022). Critical review on chemical compositions and health-promoting effects of mushroom Agaricus blazei Murill. Current Research in Food Science, 5(5), 2190-2203. https://doi.org/10.1016/j.crfs.2022.10.029

Kaur, R., Sharma, M., Ji, D., Xu, M., & Agyei, D. (2020). Structural features, modification, and functionalities of beta-glucan. Fibers, 8(1), 1. https://doi.org/10.3390/fib8010001

Kim, H., Jeon, Y. E., Kim, S. M., Jung, J. I., Ko, D., Kim, E. J. (2023). Agaricus bisporus extract exerts an anti-obesity effect in high-fat diet-induced obese C57BL/6N Mice by inhibiting pancreatic lipase-mediated fat absorption. Nutrients, 15(19), 4225. https://doi.org/10.3390/nu15194225.

Kono, H., Kondo, N., Isono, T., Ogata, M., & Hirabayashi, K. (2020). Characterization of the secondary structure and order–disorder transition of a β-(1 → 3, 1 → 6)-glucan from Aureobasidium pullulans. International Journal of Biological Macromolecules, 154, 1382-1391. https://doi.org/10.1016/j.ijbiomac.2019.11.018

Li, Y., Sheng, Y., Lu, X. et al. (2020). Isolation and purification of acidic polysaccharides from Agaricus blazei Murill and evaluation of their lipid-lowering mechanism. International Journal of Biological Macromolecules, 157, 276-287. https://doi.org/10.1016/j.ijbiomac.2020.04.190

Mahmoud Amer, E., Saber, S. H., Abo Markeb, A., et al. (2021). Enhancement of β-Glucan biological activity using a modified acid-base extraction method from Saccharomyces cerevisiae. Molecules, 26(8), 2113. https://doi.org/10.3390/molecules26082113

Malhotra, H., Kaushik, P., Kamboj, A., & Gautam, R. K. (2022). Role of β-glucans in dyslipidemia and obesity. Ahmed S, Bhattacharya T, Annu, Ali A (Eds.). In: Handbook of Nanotechnology in Nutraceuticals, 1st ed. Boca Raton, FL: CRC Press.

Manabe, N., & Yamaguchi, Y. (2021). 3D Structural Insights into β-Glucans and Their Binding Proteins. International Journal of Molecular Sciences, 22(4), 1578. https://doi.org/10.3390/ijms22041578

Menezes, T. M., Campelo, M. da., Lima, A. B., et al. (2022). Effects of polysaccharides isolated from mushrooms (Lentinus Edodes Berk or Agaricus blazei Murill) on the gelation of Pluronic® F127. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 642, 128684. https://doi.org/10.1016/j.colsurfa.2022.128684

Murphy, E. J., Rezoagli, E., Major, I., Rowan, N. J., Laffey, J. G. (2020). β-Glucan metabolic and immunomodulatory properties and potential for clinical application. Journal of Fungi, 6(4), 356. https://doi.org/10.3390/jof6040356

Nakao, M., Sugaya, M., Fujita, H., et al. (2020). TLR2 deficiency exacerbates imiquimod-induced psoriasis-like skin inflammation through decrease in regulatory T Cells and impaired IL-10 Production. International Journal of Molecular Sciences, 21(22), 8560. https://doi.org/10.3390/ijms21228560

Ogasawara, A., Doi, H., Matsui, T., Tokunaga, E., Amakawa, M., & Akiyama, H. (2023). Agaritine derived from Agaricus blazei Murrill induces apoptosis via mitochondrial membrane depolarization in hematological tumor cell lines. Fujita Medical Journal, 9(2),147-153. https://doi.org/10.20407/fmj.2022-021

Pérez-Bassart, Z., Falcó, I., Martínez-Sanz, M. et al. (2024). Antiviral and technological properties of β-glucan-rich aqueous fractions from pleurotus ostreatus waste biomass. Food Hydrocolloids, 146,109308. https://doi.org/10.1016/j.foodhyd.2023.109308

Roda, E., Luca, F., Iorio, C. D. et al. (2020). Novel medicinal mushroom blend as a promising supplement in integrative oncology: A multi-tiered study using 4T1 triple-negative mouse breast cancer model. International Journal of Molecular Sciences, 21(10), 3479. https://doi.org/10.3390/ijms21103479

Rózsa, S., Măniuțiu, D. N., Poșta, G., et al. (2019). Influence of the culture substrate on the Agaricus blazei murrill mushrooms vitamins content. Plants (Basel), 8(9), 316. https://doi.org/10.3390/plants8090316

Suzuki, T., Kusano, K., Kondo, N., Nishikawa, K., Kuge, T., & Ohno, N. (2021). Biological activity of high-purity β-1,3-1,6-Glucan derived from the black yeast Aureobasidium pullulans: A literature review. Nutrients, 13(1), 242. https://doi.org/10.3390/nu13010242

Tontowiputro, D. K., Sargowo, D., Tjokroprawiro, A., Rifa’I, M. (2020). The interaction of β-glucan on dectin-1 receptor or TLR-2 might have the potency to activate function of Treg cell and production of anti-inflammatory cytokine. EurAsian Journal of BioSciences, 14(1), 967-971.

Utama, G. L., Oktaviani, L., Balia, R. L., & Rialita, T. (2023). Potential application of yeast cell wall biopolymers as probiotic encapsulants. Polymers (Basel), 15(16), 3481. https://doi.org/10.3390/polym15163481

Wei, Q., Zhan, Y., Chen, B., et al. (2019). Assessment of antioxidant and antidiabetic properties of Agaricus blazei Murill extracts. Food Science & Nutrition, 8(1), 332-339. https://doi.org/10.1002/fsn3.1310

Wu, L., Zhao, J., Zhang, X., Liu, S., & Zhao, C. (2021). Antitumor effect of soluble β-glucan as an immune stimulant. International Journal of Biological Macromolecules, 179,116-124. https://doi.org/10.1016/j.ijbiomac.2021.02.207

Yahayu, M., Ramli, S., Abd Rasid, Z. I., Dailin, D. J., Sukmawati, D., Moloi, N., & El Enshasy, H. A. (2023). Bioactive compounds and medicinal value of the rare mushroom. Deshmukh SK, Sridhar KR, Enshasy HAE (Eds.). In: Bioprospects of Macrofungi. Boca Raton, FL: CRC Press.




DOI: https://doi.org/10.14421/biomedich.2024.131.285-289

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Dicky Kurniawan Totowiputro, Djanggan Sargowo, Askandar Tjokroprawiro, Muhaimin Rifa'i



Biology, Medicine, & Natural Product Chemistry
ISSN 2089-6514 (paper) - ISSN 2540-9328 (online)
Published by Sunan Kalijaga State Islamic University & Society for Indonesian Biodiversity.

CC BY NC
This work is licensed under a CC BY-NC