Nanotechnology-Based Vaccines

Mohamed Hussein, Madiha Mumtaz, Iqra Nasir, Anisa Abdullahi

Abstract


Several new infectious diseases have developed in recent years, and a few old ones that were formerly thought to pose no threat to humans have made a comeback. Millions of fatalities are attributed to these illnesses together, having a significant negative influence on the worldwide socioeconomic and healthcare sectors. The lack of appropriate medications for many of these disorders is one of the biggest obstacles to treating them. Yet, several of the most common diseases currently have no vaccinations that are reliable. The ideal vaccine should have several key characteristics, including safety, stability, and the capacity to induce a sufficient and long-lasting immune response with a minimal number of doses. To induce protective immunity against illnesses, different generation vaccines are employed, including attenuated or dead entire organisms (first generation), subunits (second generation), and RNA or DNA vaccines (third generation). To get beyond these obstacles, a reliable vaccination delivery mechanism is needed, one that not only gets the vaccine molecules to the target region where they can trigger long-lasting immune responses but also has few side effects and uses fewer doses. Only a few hundred atoms make up the majority of nanoparticles. Nanoparticles have a relatively significant surface area-to-volume ratio because of their extremely small size. Nanoparticles can have surprising optical, physical, and chemical properties due to this property. Nanotechnology has many benefits for the creation of vaccines for the next generation. A delivery strategy based on nanocarriers can shield vaccines from early deterioration, increase stability, have high adjuvant qualities, and can help with the targeted distribution of an immunogen. The researcher conducts an examination of articles that are in accordance with the issue to be studied. Articles used in the literature review are obtained through the database of international journal providers through PubMed, we investigated clinical studies and discussed what happened in these clinical studies and the extent of the effectiveness of Nanoparticle-Based Vaccines. In order to achieve effective vaccine distribution and generate the required host immunity against infectious diseases, this review article focuses on the applications of nanocarrier-based vaccine formulations and the methodologies utilized for functionalizing nanoparticles.

Keywords


Nanoparticles; Immunogen; Vaccines

Full Text:

PDF

References


Doria-Rose, N., Suthar, M. S., Makowski, M., O’Connell, S., McDermott, A. B., Flach, B., … mRNA-1273 Study Group. (2021). Antibody persistence through 6 months after the second dose of mRNA-1273 vaccine for covid-19. The New England Journal of Medicine, 384(23), 2259–2261. doi:10.1056/NEJMc2103916.

Braz Gomes, K., D’Sa, S., Allotey-Babington, G. L., Kang, S.-M., & D’Souza, M. J. (2021). Transdermal vaccination with the matrix-2 protein virus-like particle (M2e VLP) induces immunity in mice against influenza A virus. Vaccines, 9(11), 1324. doi:10.3390/vaccines9111324

Bachmann, M. F., & Jennings, G. T. (2010). Vaccine delivery: a matter of size, geometry, kinetics, and molecular patterns. Nature Reviews. Immunology, 10(11), 787–796. doi:10.1038/nri2868

Bachmann, M. F., Rohrer, U. H., Kündig, T. M., Bürki, K., Hengartner, H., & Zinkernagel, R. M. (1993). The influence of antigen organization on B cell responsiveness. Science (New York, N.Y.), 262(5138), 1448–1451. doi:10.1126/science.8248784

Baranov, M. V., Kumar, M., Sacanna, S., Thutupalli, S., & van den Bogaart, G. (2020). Modulation of immune responses by particle size and shape. Frontiers in Immunology, 11, 607945. doi:10.3389/fimmu.2020.607945

de Souza, G. A. P., Rocha, R. P., Gonçalves, R. L., Ferreira, C. S., de Mello Silva, B., de Castro, R. F. G., … Coelho, L. F. L. (2021). Nanoparticles as vaccines to prevent arbovirus infection: A long road ahead. Pathogens, 10(1), 36. doi:10.3390/pathogens10010036

Abo-zeid, Y., & Garnett, M. C. (2020). Polymer nanoparticle as a delivery system for ribavirin: Do nanoparticle avoid uptake by Red Blood Cells? Journal of Drug Delivery Science and Technology, 56(101552), 101552. doi:10.1016/j.jddst.2020.101552

Chen, L., & Liang, J. (2020). An overview of functional nanoparticles as novel emerging antiviral therapeutic agents. Materials Science & Engineering. C, Materials for Biological Applications, 112(110924), 110924. doi:10.1016/j.msec.2020.110924

Chen, N., Zheng, Y., Yin, J., Li, X., & Zheng, C. (2013). Inhibitory effects of silver nanoparticles against adenovirus type 3 in vitro. Journal of Virological Methods, 193(2), 470–477. doi:10.1016/j.jviromet.2013.07.020

Choi, A., Koch, M., Wu, K., Chu, L., Ma, L., Hill, A., … Edwards, D. K. (2021). Safety and immunogenicity of SARS-CoV-2 variant mRNA vaccine boosters in healthy adults: an interim analysis. Nature Medicine, 27(11), 2025–2031. doi:10.1038/s41591-021-01527-y

Chen, L., Valentine, J. L., Huang, C.-J., Endicott, C. E., Moeller, T. D., Rasmussen, J. A., … DeLisa, M. P. (2016). Outer membrane vesicles displaying engineered glycotopes elicit protective antibodies. Proceedings of the National Academy of Sciences of the United States of America, 113(26), E3609-18. doi:10.1073/pnas.1518311113

Heinz, H., Pramanik, C., Heinz, O., Ding, Y., Mishra, R. K., Marchon, D., … Ziolo, R. F. (2017). Nanoparticle decoration with surfactants: Molecular interactions, assembly, and applications. Surface Science Reports, 72(1), 1–58. doi:10.1016/j.surfrep.2017.02.001

Alimehmeti, I. (2021). Efficacy and Safety of AZD1222, BNT162b2 and mRNA-1273 vaccines against SARS-CoV-2. Albanian Journal of Trauma and Emergency Surgery, 5(1), 791–796. doi:10.32391/ajtes.v5i1.178

Thomas, S. J., Moreira, E. D., Jr, Kitchin, N., Absalon, J., Gurtman, A., Lockhart, S., … C4591001 Clinical Trial Group. (2021). Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine through 6 months. The New England Journal of Medicine, 385(19), 1761–1773. doi:10.1056/NEJMoa2110345

Heath, P. T., Galiza, E. P., Baxter, D. N., Boffito, M., Browne, D., Burns, F., … 2019nCoV-302 Study Group. (2021). Safety and efficacy of NVX-CoV2373 covid-19 vaccine. The New England Journal of Medicine, 385(13), 1172–1183. doi:10.1056/NEJMoa2107659

Houser, K. V., Chen, G. L., Carter, C., Crank, M. C., Nguyen, T. A., Burgos Florez, M. C., … VRC 316 Study Team. (2022). Safety and immunogenicity of a ferritin nanoparticle H2 influenza vaccine in healthy adults: a phase 1 trial. Nature Medicine, 28(2), 383–391. doi:10.1038/s41591-021-01660-8

Shinde, V., Bhikha, S., Hoosain, Z., Archary, M., Bhorat, Q., Fairlie, L., … 2019nCoV-501 Study Group. (2021). Efficacy of NVX-CoV2373 Covid-19 vaccine against the B.1.351 variant. The New England Journal of Medicine, 384(20), 1899–1909. doi:10.1056/NEJMoa2103055

Dunkle, L. M., Kotloff, K. L., Gay, C. L., Áñez, G., Adelglass, J. M., Barrat Hernández, A. Q., … 2019nCoV-301 Study Group. (2022). Efficacy and safety of NVX-CoV2373 in adults in the United States and Mexico. The New England Journal of Medicine, 386(6), 531–543. doi:10.1056/NEJMoa2116185

Wei, L., Zhao, T., Zhang, J., Mao, Q., Gong, G., Sun, Y., … Wu, Y. (2022). Efficacy and safety of a nanoparticle therapeutic vaccine in patients with chronic hepatitis B: A randomized clinical trial. Hepatology (Baltimore, Md.), 75(1), 182–195. doi:10.1002/hep.32109

Sahin, U., Muik, A., Vogler, I., Derhovanessian, E., Kranz, L. M., Vormehr, M., … Türeci, Ö. (2021). BNT162b2 vaccine induces neutralizing antibodies and poly-specific T cells in humans. Nature, 595(7868), 572–577. doi:10.1038/s41586-021-03653-6

Datoo, M. S., Natama, M. H., Somé, A., Traoré, O., Rouamba, T., Bellamy, D., … Tinto, H. (2021). Efficacy of a low-dose candidate malaria vaccine, R21 in adjuvant Matrix-M, with seasonal administration to children in Burkina Faso: a randomised controlled trial. Lancet, 397(10287), 1809–1818. doi:10.1016/S0140-6736(21)00943-0

Toback, S., Galiza, E., Cosgrove, C., Galloway, J., Goodman, A. L., Swift, P. A., … 2019nCoV-302 Study Group. (2022). Safety, immunogenicity, and efficacy of a COVID-19 vaccine (NVX-CoV2373) co-administered with seasonal influenza vaccines: an exploratory substudy of a randomised, observer-blinded, placebo-controlled, phase 3 trial. The Lancet. Respiratory Medicine, 10(2), 167–179. doi:10.1016/S2213-2600(21)00409-4

Maruggi, G., Mallett, C. P., Westerbeck, J. W., Chen, T., Lofano, G., Friedrich, K., … Yu, D. (2022). A self-amplifying mRNA SARS-CoV-2 vaccine candidate induces safe and robust protective immunity in preclinical models. Molecular Therapy: The Journal of the American Society of Gene Therapy, 30(5), 1897–1912. doi:10.1016/j.ymthe.2022.01.001

Madhi, S. A., Moodley, D., Hanley, S., Archary, M., Hoosain, Z., Lalloo, U., … 2019nCoV-501 Study Group. (2022). Immunogenicity and safety of a SARS-CoV-2 recombinant spike protein nanoparticle vaccine in people living with and without HIV-1 infection: a randomised, controlled, phase 2A/2B trial. The Lancet. HIV, 9(5), e309–e322. doi:10.1016/S2352-3018(22)00041-8

Stuart, A. S. V., Shaw, R. H., Liu, X., Greenland, M., Aley, P. K., Andrews, N. J., … Com-COV2 Study Group. (2022). Immunogenicity, safety, and reactogenicity of heterologous COVID-19 primary vaccination incorporating mRNA, viral-vector, and protein-adjuvant vaccines in the UK (Com-COV2): a single-blind, randomised, phase 2, non-inferiority trial. Lancet, 399(10319), 36–49. doi:10.1016/S0140-6736(21)02718-5

Aldrich, C., Leroux-Roels, I., Huang, K. B., Bica, M. A., Loeliger, E., Schoenborn-Kellenberger, O., … Oostvogels, L. (2021). Proof-of-concept of a low-dose unmodified mRNA-based rabies vaccine formulated with lipid nanoparticles in human volunteers: A phase 1 trial. Vaccine, 39(8), 1310–1318. doi:10.1016/j.vaccine.2020.12.070

Shinde, V., Cho, I., Plested, J. S., Agrawal, S., Fiske, J., Cai, R., … Glenn, G. M. (2022). Comparison of the safety and immunogenicity of a novel Matrix-M-adjuvanted nanoparticle influenza vaccine with a quadrivalent seasonal influenza vaccine in older adults: a phase 3 randomised controlled trial. The Lancet Infectious Diseases, 22(1), 73–84. doi:10.1016/S1473-3099(21)00192-4

Formica, N., Mallory, R., Albert, G., Robinson, M., Plested, J. S., Cho, I., … 2019nCoV-101 Study Group. (2021). Different dose regimens of a SARS-CoV-2 recombinant spike protein vaccine (NVX-CoV2373) in younger and older adults: A phase 2 randomized placebo-controlled trial. PLoS Medicine, 18(10), e1003769. doi:10.1371/journal.pmed.1003769

H S, R., Khobragade, A., Satapathy, D., Gupta, M., Kumar, S., Bhomia, V., … Agrawal, A. D. (2021). Safety and Immunogenicity of a novel three-dose recombinant nanoparticle rabies G protein vaccine administered as simulated post exposure immunization: A randomized, comparator controlled, multicenter, phase III clinical study. Human Vaccines & Immunotherapeutics, 17(11), 4239–4245. doi:10.1080/21645515.2021.1957413

August, A., Attarwala, H. Z., Himansu, S., Kalidindi, S., Lu, S., Pajon, R., … Zaks, T. (2021). A phase 1 trial of lipid-encapsulated mRNA encoding a monoclonal antibody with neutralizing activity against Chikungunya virus. Nature Medicine, 27(12), 2224–2233. doi:10.1038/s41591-021-01573-6

Shinde, V., Cai, R., Plested, J., Cho, I., Fiske, J., Pham, X., … Glenn, G. M. (2021). Induction of cross-reactive hemagglutination inhibiting antibody and polyfunctional CD4+ T-cell responses by a recombinant Matrix-M-adjuvanted hemagglutinin nanoparticle influenza vaccine. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America, 73(11), e4278–e4287. doi:10.1093/cid/ciaa1673

Kremsner, P. G., Mann, P., Kroidl, A., Leroux-Roels, I., Schindler, C., Gabor, J. J., … CV-NCOV-001 Study Group. (2021). Safety and immunogenicity of an mRNA-lipid nanoparticle vaccine candidate against SARS-CoV-2 : A phase 1 randomized clinical trial: A phase 1 randomized clinical trial. Wiener Klinische Wochenschrift, 133(17–18), 931–941. doi:10.1007/s00508-021-01922-y

Mallory, R. M., Formica, N., Pfeiffer, S., Wilkinson, B., Marcheschi, A., Albert, G., … Novavax 2019nCoV101 Study Group. (2022). Safety and immunogenicity following a homologous booster dose of a SARS-CoV-2 recombinant spike protein vaccine (NVX-CoV2373): a secondary analysis of a randomised, placebo-controlled, phase 2 trial. The Lancet Infectious Diseases, 22(11), 1565–1576. doi:10.1016/S1473-3099(22)00420-0

Heath, P. T., Galiza, E. P., Baxter, D. N., Boffito, M., Browne, D., Burns, F., … Toback, S. (2023). Safety and efficacy of the NVX-CoV2373 Coronavirus disease 2019 vaccine at completion of the placebo-controlled phase of a randomized controlled trial. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America, 76(3), 398–407. doi:10.1093/cid/ciac803

Lovell, J. F., Baik, Y. O., Choi, S. K., Lee, C., Lee, J.-Y., Miura, K., … Choi, J.-H. (2022). Interim analysis from a phase 2 randomized trial of EuCorVac-19: a recombinant protein SARS-CoV-2 RBD nanoliposome vaccine. BMC Medicine, 20(1), 462. doi:10.1186/s12916-022-02661-1

Gatechompol, S., Kittanamongkolchai, W., Ketloy, C., Prompetchara, E., Thitithanyanont, A., Jongkaewwattana, A., … ChulaVAC-001 study team. (2022). Safety and immunogenicity of a prefusion non-stabilized spike protein mRNA COVID-19 vaccine: a phase I trial. Nature Microbiology, 7(12), 1987–1995. doi:10.1038/s41564-022-01271-0

Masuda, T., Murakami, K., Sugiura, K., Sakui, S., Schuring, R. P., & Mori, M. (2022). Safety and immunogenicity of NVX-CoV2373 (TAK-019) vaccine in healthy Japanese adults: Interim report of a phase I/II randomized controlled trial. Vaccine, 40(24), 3380–3388. doi:10.1016/j.vaccine.2022.04.035

Ishikawa, T., Kageyama, S., Miyahara, Y., Okayama, T., Kokura, S., Wang, L., … Shiku, H. (2021). Safety and antibody immune response of CHP-NY-ESO-1 vaccine combined with poly-ICLC in advanced or recurrent esophageal cancer patients. Cancer Immunology, Immunotherapy: CII, 70(11), 3081–3091. doi:10.1007/s00262-021-02892-w

Li, J., Hui, A.-M., Zhang, X., Ge, L., Qiu, Y., Tang, R., … Zhu, F. (2022). Immune persistence and safety after SARS-CoV-2 BNT162b1 mRNA vaccination in Chinese adults: A randomized, placebo-controlled, double-blind phase 1 trial. Advances in Therapy, 39(8), 3789–3798. doi:10.1007/s12325-022-02206-1

Wei, J., Cheng, X., Zhang, Y., Gao, C., Wang, Y., Peng, Q., … Gu, J. (2021). Identification and application of a neutralizing epitope within alpha-hemolysin using human serum antibodies elicited by vaccination. Molecular Immunology, 135, 45–52. doi:10.1016/j.molimm.2021.03.028




DOI: https://doi.org/10.14421/biomedich.2023.121.343-361

Refbacks

  • There are currently no refbacks.




Copyright (c) 2023 Mohamed Hussein, Madiha Mumtaz, Iqra Nasir, Anisa Abdullahi



Biology, Medicine, & Natural Product Chemistry
ISSN 2089-6514 (paper) - ISSN 2540-9328 (online)
Published by Sunan Kalijaga State Islamic University & Society for Indonesian Biodiversity.

CC BY NC
This work is licensed under a CC BY-NC