Peptide Fractions from Pepsin-digested Moringa oleifera Seed Proteins Inhibit Hemoglobin Glycation and Carbohydrate-hydrolyzing Enzymes

Oluwafemi Emmanuel Ekun

Abstract


The multidirectional abilities of peptide digests and fractions obtained from the hydrolysis of food-based proteins have been investigated in recent times. This study aims to evaluate the effects of pepsin-derived Moringa oleifera seed protein hydrolysates and fractions on hemoglobin glycation and the carbohydrases - ?-amylase and ?-glucosidase. Proteins were extracted from M. oleifera seeds and consequently digested using pepsin. The hydrolysates obtained were separated into fractions of <1 kD, 1-3 kD, and 3-5 kD ranges using size-exclusion chromatography and comparison with elution volumes of known standards. The activities of the hydrolysates and peptide fractions against both the non-enzymatic glycation of hemoglobin and the carbohydrases were determined in vitro. Results revealed that the hydrolysate and its peptide fractions demonstrated varying abilities against the glycation of hemoglobin, with the unfractionated hydrolysate showing better activities (78.230 ± 0.774 % at a maximum concentration of 1.0 mg/ml) than its peptide fractions. Also, the hydrolysates and fractions demonstrated higher inhibitory effects on a-amylase (with all fractions displaying above 50% inhibition at a final concentration of 1.0 mg/mL) than against a-glucosidase. Kinetic analysis of a selected fraction showed that it inhibited ?-amylase via a mixed mechanism (Ki = 0.029 mg/mL) but displayed an uncompetitive mode for ?-glucosidase inhibition (Ki = 0.333 mg/mL). Therefore, it is inferred that M. oleifera seed proteins encode potentially therapeutic peptide sequences that could be further processed to formulate potential antidiabetic agents.

Keywords


Moringa oleifera; Peptide; Pepsin; Hemoglobin; ?-Amylase; ?-Glucosidase

Full Text:

PDF

References


Acharya, D.K., Shah. I.J., Gami, P.N, Shukla, R.M. (2014). Optimization for ?- amylase production by Aspergillus oryzae using submerged fermentation technology. Basic Res. J. Microbiol. 1(4): 01-10

Al-Asmari, A. K., Albalawi, S. M., Athar, M. T., Khan, A. Q., Al-Shahrani, H., and Islam, M. (2015). Moringa oleifera as an anti-cancer agent against breast and colorectal cancer cell lines. PLoS ONE 10:e0135814. doi: 10.1371/journal.pone.0135814

Alashi, A.M., Blanchard, C.L., Mailer, R.J., Agboola, S.O., Mawson, A.J., He, R., Malomo, S.A., Girgih, A.T., Aluko, R.E. (2014). Blood pressure lowering effects of Australian canola protein hydrolysates in spontaneously hypertensive rats.

Ali, H., Houghton, P.J., Soumyanath, A. (2006). Alpha-amylase inhibitory activity of some Malaysian plants used to treat diabetes, with particular reference to Phyllanthus amarus. J. Ethnopharmacol. 107: 449–455

Arise, R. O., Yekeen, A. A. and Ekun, O. E. (2016b). In vitro antioxidant and ?-amylase inhibitory properties of watermelon seed protein hydrolysates. Environmental and Experimental Biology, 14: 163–172.

Arise, R. O., Yekeen, A. A., Ekun, O. E. and Olatomiwa, O. J. (2016a). Protein Hydrolysates from Citrullus lanatus Seed: Antiradical and Hydrogen Peroxide-scavenging properties and kinetics of Angiotensin-I converting enzyme inhibition. Ceylon Journal of Science 45(2): 39-52.

Arise, R.O., Idi, J.J., Mic-Braimoh, I, M., Korode, E., Ahmed, R.N. and Osemwegie, O. (2019). In vitro Angiotesin-1-converting enzyme, ?-amylase and ?-glucosidase inhibitory and antioxidant activities of Luffa cylindrical (L.) M. Roem seed protein hydrolysate, Heliyon, 5(5): e0163

Awosika, T. O. and Aluko, R. E. (2019) Inhibition of the in-vitro activities of ?-amylase, ?-glucosidase and pancreatic lipase by yellow field pea (Pisum satvum L.) protein hydrolysates. Int. J. Food Sci and Tech. doi:10.1111/ijfs.14087.

Deshmukh, C.D. and Jain, A(2015). Diabetes Mellitus: A Review Int. J. Pure App. Biosci. 3 (3): 224-230

Ekun, O. E., Olusola, A.O., Sanni, J. A. and Ishola, F. (2022) Peptide fractions from chymotrypsin-hydrolyzed Moringa oleifera seed proteins inhibit ?-amylase and ?-glucosidase in vitro. Biology, Medicine and Natural Product Chemistry 11(1): 7-16

Freire, J.E., Vasconcelos, I.M., Moreno, F.B., Batista, A.B., Lobo, M.D., Pereira, M.L., Lima, J.P., Almeida, R.V., Sousa, A.J., Monteiro-Moreira, A.C., Oliveira, J.T. and Grangeiro, T.B. (2015). Mo-CBP3, an Antifungal Chitin-Binding Protein from Moringa oleifera Seeds, Is a Member of the 2S Albumin Family. PLoS ONE, 10, e0119871.

Girgih, A.T., Udenigwe, C.C., Li H., Adebiyi, A.P., Aluko R.E. (2011). Kinetics of enzyme inhibition and antihypertensive effects of hemp seed (Cannabis sativa L.) protein hydrolysates. J. Am. Oil Chem. Soc. 88: 1767–1774.

Han, C., Lin, Y., Lee, T., Liang, H., Hou, W. (2014). Asn-Trp dipeptides improve the oxidative stress and learning dysfunctions in D-galactose-induced BALB/ c mice. Food and Function 5(9): 2228-36.

Hosseini M, Asgary, S., and Najafi S.(2015). Inhibitory potential of pure isoflavonoids, red clover, and alfalfa extracts on hemoglobin glycosylation. ARYA Atheroscler 11(2):133-138.

Katzung, B.G., Masters, S.B. and Trevor, A.J. (2012). Basic and Clinical Pharmacology, 12th edition. San Fransisco, United States: Lange Medical Publications

Kim, Y. M., Jeong Y. K., Wang, M. H., Lee, W. Y. and Rhee, H. I. (2005) Inhibitory effect of pine extract on alpha-glucosidase activity and postprandial hyperglycemia. Nutrition. 21(6): 756-61.

Kumar R., Chaudhary K., Chauhan, J. S., Nagpal, G., Kumar R., Sharma M. and Raghava, G.P., (2015). An in silico platform for predicting, screening and designing of antihypertensive peptides. Scientific reports. 5(12) 1-9

Kwaambwa, H.M., Hellsing, M.S., Rennie, A.R. and Barker, R. (2015). Interaction of Moringa oleifera Seed Protein with a Mineral Surface and the Influence of Surfactants. Journal of Colloid and Interface Science.448, 339-346.

Leone, A., Spada, A., Battezzati, A., Schiraldi, A., Aristil, J. and Bertoli, S. (2016). Moringa oleifera Seeds and Oil: Characteristics and Uses for Human Health. Int. J. Mol. Sci.17: 2141

Lopez-Barrios L., Gutierrez-Uribe J. A. and Serna-Sald?var S. O.(2014). Bioactive Peptides and Hydrolysates from Pulses and Their Potential Use as Functional Ingredients. Journal of Food Science 79(3) 273-283

Madubuike, P. C., Nwobu, D. N., Nwajiobi, C. C. and Ezemokwe, D. E (2015). Proximate Analysis of Moringa oleifera Seed and Characterization of The Seed Oil. Int. J. Basic and Appl. Sci. 4(1): pp. 71-80.

Majumder, K. and Wu, J. (2015). Molecular Targets of Antihypertensive Peptides: Understanding the Mechanisms of Action Based on the Pathophysiology of Hypertension. International Journal of Molecular Sciences, 16(1), 256–283.

Monera, T. G., Wolfe, A. R., Maponga, C. C., Benet, L. Z., and Guglielmo, J. (2008). Moringa oleifera leaf extracts inhibit 6?-hydroxylation of testosterone by CYP3A4. J. Infect. Dev. Ctries. 2, 379–383. doi: 10.3855/jidc.201

Mune-Mune, M. A., Nyobe, E. C., Bassogog, C. B. and Minka, S. R. (2016). A comparison on the nutritional quality of proteins from Moringa oleifera leaves and seeds. Cogent Food & Agriculture 2: 1213618.

Naik, P. 2012. Protein metabolism. In: Essentials of Biochemistry. Jaypee Brothers Medical Publishers, pp. 226–257.

Nunthanawanich, P., Sompong, W., Sirikwanpong, S., Makynen, K., Adisakwattana, S., Dahlan, W., et al. (2016). Moringa oleifera aquoeus leaf extract inhibits reducing monosaccharide-induced protein glycation and oxidation of bovine serum albumin. Springerplus 5:1098. doi: 10.1186/s40064-016-2759-3

Oboh G., Ademiluyi A.O., Faloye Y.M. (2011). Effect of combination on the antioxidant and inhibitory properties of tropical pepper varieties against ?-amylase and ?-glucosidase activities in vitro. Journal of Medical Foods, 14: 1152–1158.

Olusola, A. O. and Ekun, O. E. (2018). Arachis hypogea Seed Protein Hydrolysates Demonstrate ?-Amylase – Inhibitory and Antioxidant Properties in-vitro. Journal of Emerging Trends in Engineering and Applied Sciences 9(4):150-159

Olusola, A. O. and Ekun, O. E. (2019a). Alpha- Amylase – Inhibitory Properties and in vitro Antioxidant Potentials of Cowpea Seed Protein Hydrolysates. AASCIT Communications 6(1): 1-12.

Olusola, A. O. and Ekun, O. E. (2019b). Moringa oleifera seed protein hydrolysates inhibit haemoglobin glycation and ?-glucosidase activity in-vitro. Global Journal of Medical Research XIX(III) 31-40

Olusola, A. O., Ekun, O. E., David, T. I., Olorunfemi, O. E. and Oyewale, M. B. (2018). Moringa oleifera Seed Protein Hydrolysates: Kinetics of ?-amylase Inhibition and Antioxidant Potentials. Global Advanced Research Journal of Medicine and Medical Sciences 7(9) pp. 190-201.

Parveen, N., Roy, A. and Prasad, P.(2017). Diabetes Mellitus – Pathophysiology & Herbal Management. UK Journal of Pharmaceutical and Biosciences 5(5): 34-42.

Perrone, A., Giovino, A., Benny, J. and Martinelli F. (2020) Advanced glycation end products (ages): biochemistry, signaling, analytical methods, and epigenetic effects. Oxidative Medicine and Cellular Longevity. Vol 2020:1-18

Piero, M.N., Nzaro, G.M and Njagi, J.M.(2014) Diabetes mellitus – a devastating metabolic disorder. Asian Journal of Biomedical and Pharmaceutical Sciences; 04 (40),1-7.

Qaisar, M. N., Chaudhary, B. A., Sajid., M. U. and Hussain, N. (2014) ?-glucosidase Inhibitory Activity of Dichoromethane and Methanol Extracts of Croton bonpladianum Baill. Tropical Journal of Pharmaceutical Research 13(11): 1833-1836

Ramasamy, R., Vannucci, S. J., Yan, S. S., Herold, K., Yan, S. F. and Schmidt, A. M. (2005). Advanced glycation end products and RAGE: a common thread in aging, diabetes, neurodegeneration, and inflammation. Glycobiology vol. 15(7): 16–28

Rosenstock, J., and Zinman, B. (2007). "Dipeptidyl peptidase-4 inhibitors and the management of type 2 diabetes mellitus". Current Opinion in Endocrinology, Diabetes and Obesity. 14 (2): 98–107.

Singh, V. P., Bali, A., Singh, N and Jaggi, A. S. (2014). Advanced Glycation End Products and Diabetic Complications. Korean J Physiol Pharmacol. 18: 1-14.

Siow, H.L. and Gan, C.Y. (2016). Extraction, identification, and structure.Activity relationship of antioxidative and apha-amylase inhibitory peptides from cumin seeds (Cuminum cyminum). J. Funct. Foods. 22, 1–12.

Tuorkey, M. J. (2016). Effects of Moringa oleifera aquoeus leaf extract in alloxan induced diabetic mice. Interv. Med. Appl. Sci. 8, 109–117.

Venu, M. R., Shanaj, B. P., Heena, B. S., Preema, K. A., Mahesh, S., Shaik, K. and Nagarajan, G. (2016). “Evaluation of in vitro anti- diabetic activity on ethanolic extract of aerial parts of Murraya koenigii: Non-enzymatic glycosylation of hemoglobin. Indian Journal of Research in Pharmacy and Biotechnology. 4(3): 147-149.

Vilcacundo, R., Martínez-Villaluenga, C., Miralles, B. and Hernández-Ledesma, B. (2019). Release of multifunctional peptides from kiwicha (Amaranthus caudatus) protein under in vitro simulated gastrointestinal digestion. Journal of the Science of Food and Agriculture. 99(3):1225-1232.

Voet, D., Voet, J. G. and Pratt, C.W. (2016). Fundamentals of Biochemistry. 5th edition. United States: Wiley

Walter, A., Samuel, W., Peter, A., and Jospeh, O. (2011). Antibacterial activity of Moringa oleifera and Moringa stenopetala methanol and n-hexane seed extracts on bacteria implicated in water borne diseases. Afr. J. Microbiol. Res. 5, 153–157. doi: 10.5897/AJMR10.457




DOI: https://doi.org/10.14421/biomedich.2023.121.413-422

Refbacks

  • There are currently no refbacks.




Copyright (c) 2023 Oluwafemi Emmanuel Ekun



Biology, Medicine, & Natural Product Chemistry
ISSN 2089-6514 (paper) - ISSN 2540-9328 (online)
Published by Sunan Kalijaga State Islamic University & Society for Indonesian Biodiversity.

CC BY NC
This work is licensed under a CC BY-NC