Antioxidative Stress and Hepatoprotective Activities of Leaf Extract and Fractions of Setaria megaphylla in Plasmodium berghei Infected Mice

Ndanti Bartholomew William, Augustine Lawrence Bassey, John Akpan Udobang, Jude Efiom Okokon


Setaria megaphylla (Steud) Dur & Schinz (Poaceae), a perennial grass used traditionally in the treatment of various diseases such as malaria was, investigated for antioxidative stress activity in Plasmodium berghei-infected mice.  The leaf extract (200-600 mg/kg) and fractions (hexane, dichloromethane, ethyl acetate and methanol; 400 mg/kg) of S. megaphylla were investigated for antioxidative stress and hepatoprotective activities in Plasmodium berghei-infected mice using a modified suppressive test model. Antioxidative stress and hepatoprotective potentials were assessed by determining oxidative stress markers levels, liver function indices and histopathology of liver. The extract/fractions progressively reduced parasitaemia induced by chloroquine-sensitive P. berghei infection with the methanol fraction exerting the highest activity. The leaf extract and fractions caused significant (p<0.05 – 0.001) increases in the levels of oxidative stress markers enzymes and molecules (SOD, CAT, GPx, GSH) and also reduced MDA level significantly (p<0.05) in the livers of the treated-infected mice. The extract/fractions treatment caused reduction in liver enzymes (ALT, AST and ALP), total and conjugated bilirubin. Histology of livers revealed absence or significant reductions in pathological features in the treated infected mice compared to untreated infected mice. The leaf of S. megaphylla may possess antioxidative stress and hepatoprotective effects which may in part be mediated through the chemical constituents of the plant.


Antioxidative stress; Setaria megaphylla; antimalarial; antioxidative stress; malaria; Plasmodium berghei

Full Text:



Adil R, Sumit K, Varshney M, Shahid MK, Haris M, Ashraf Malik A, Abbas FS, Mahdi A. (2013). Lipid peroxidation in cerebral malaria and Role of antioxidants, IOSR Journal of Pharmacy 3(1): 15-18.

Asagba SO, Eriyamremu GE, George BO, Okoro I. (2010). Biochemical indices of severity in human malaria. Journal of Medical Sciences, 10(4): 87-92.

Atanu FO, Idih FM, Nwonuma CO, Hetta HF, Alamery S, Batiha GE. (2021). Evaluation of antimalarial potential of extracts from Alstonia boonei and Carica papaya in Plasmodium berghei-infected mice. Evidence-Based Complementary and Alternative Medicine Volume 2021, Article ID 2599191, 2021;11 pages.

Becker K, Tilley L, Vennerstrom JL, Roberts D, Rogerson S, Ginsburg H (2004). Oxidative stress in malaria parasite-infected erythrocytes: Host-parasite interactions. International Journal of Parasitology 34: 163–189.

Chanda S, Dave R. (2009). In vitro models for antioxidant activity evaluation and some medicinal plants possessing antioxidant properties: An overview. African Journal of Microbiology Research 3(13): 981-996.

Ellman GL. (1959). Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics 82: 70-77.

Esterbauer H, Cheeseman KH. (1990). Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. Methods in Enzymology. 186: 407–421.

Fabbri C, de Cássia Mascarenhas-Netto R, Lalwani P, Melo GC, Magalhães BM, Alexandre MA, Lacerda MV, Lima ES. (2013). Lipid peroxidation and antioxidant enzymes activity in Plasmodium vivax malaria patients evolving with cholestatic jaundice. Malaria Journal 12: 315.

George BO, Osioma E, Okpoghono J1, Aina OO. (2011). Changes in liver and serum transaminases and alkaline phosphatase enzyme activities in Plasmodium berghei infected mice treated with aqueous extract of Aframomum sceptrum. African Journal of Biomedical Research 5(9): 277-281.

Gora D, Sandhya M, Shiv dp G, Praveen S (2006). Oxidative stress, tocopherol, ascorbic acid and reduced glutathione status in schzophrenics. Indian Journal of Clinical Biochemistry 21(2): 34-38.

Guha M, Kumar S, Choubey V, Maity P, Bandyopadhya U. (2006). Apoptosis in liver during malaria: Role of oxidative stress and implication of mitochondrial pathway. Federation of American Societies for Experimental Biology Journal, 20(8): 439-449.

Guthrow CE, Morris JF and Day JW. (2007). Enhanced non-enzymatic glycosylation of human serum albumin. Quarterly Journal of Medicine pp. 30-38.

Guthrow CE, Morris MA, Day JF, Thorpe SR, Baynes JW. (1979). Enhanced nonenzymatic glucosylation of human serum albumin in diabetes mellitus. Proceedings of National Academy of Sciences U S A 76(9): 4258-4261.

Knight DJ, Peters W. (1980). The antimalarial activity of N-benzyloxydihydrotriazines. I. The activity of clociguanil (BRL 50216) against rodent malaria, and studies on its mode of action. Annals of Tropical Medicine and Parasitology 74:393–404.

Kumar S, Bandyopadhyay U. (2005). Free heme toxicity and its detoxification systems in human. Toxicology Letters 157(3): 175-188.

Lawrence RA, Burk RF. (1976). Glutathione peroxidase activity in selenium- deficient rat liver. Biochemical Biophysical Research Communication 71: 952-958.

Lüersen K, Walter RD, Müller S. (2000). Plasmodium falciparum-infected red blood cells depend on a functional glutathione de novo synthesis attributable to an enhanced loss of glutathione. Biochemical Journal 346(2): 545-552.

Marklund S, Marklund G. 1974. Involvement of superoxide anion radical in the autooxidation of pyrogallol and a convenient assay for superoxide dismutase. European Journal of Biochemistry 47: 469 - 474.

Ojezele MO, Moke EG, Onyesom I. (2017). Impact of generic antimalarial or Phyllanthus amarus and vitamin co-administration on antioxidant status of experimental mice infested with Plasmodium berghei. Beni-Suef University Journal of Basic and Applied Sciences, 6(3): 260-265.

Okokon JE, Antia BS, Ita BN. (2006). Antiiflammatory and antinociceptive effects of ethanolic extract of Setaria megaphylla leaves in rodents. African Journal of Biomedical Research 9:229 - 233.

Okokon JE, Antia BS. (2007). Hypoglycaemic and antidiabetic effect of Setaria megaphylla on normal and alloxan induced diabetic Rats. Journal of Natural Remedy. 1:134 – 138.

Okokon JE, Dar A, Choudhary MI. (2013). Immunomodulatory, cytotoxic and antileishmanial activities of Setaria megaphylla. International Journal of Phytomedicine 4: 155-160.

Okokon JE, Davies K, Lekara J, Iwara K, Kumar H. (2021). Effect of solvents leaf fractions of Setaria megaphylla on alpha amylase and alpha glucosidase activities in rats. Advanced Pharmaceutical Journal 6(4):111-115.

Okokon JE, Davies K, Lekara J, Iwara K, Thomas P, Li W-W. (2022). Antidiabetic and hypolipidemic activities of solvents fractions of Setaria megaphylla and its phytochemical characterisation. Phytomedicine Plus. 2(2022):100182.

Okokon JE, Okokon PJ, Sahal D. (2017). In vitro antiplasmodial activity of some medicinal plants from Nigeria. International Journal of Herbal Medicine 5(5): 102 – 109.

Okokon JE, Ubulom PM, Udokpoh AE. (2007). Antiplasmodial activity of Setaria megaphylla. Phytotherapy Research 21: 366 – 368.

Onyesom I, Onyemakonor N. (2011). Levels of parasitaemia and changes in some liver enzymes among malarial infected patients in Edo-Delta Region of Nigeria. Current Research Journal of Biological Sciences 3(2): 78-81.

Orhue, NEJ, Nwanze EAC Okafor A (2005). Serum total protein, albumin and globulin levels in Trypanosoma brucei-infected rabbits: Effect of orally administered Scoparia dulcis. African Journal of Biotechnology 4(10): 1152-1155.

Percário S, Moreira DR, Gomes BAQ, Ferreira MES, Gonçalves ACM, Laurindo PSOC (2012). Oxidative stress in malaria. International Journal of Molecular Sciences 13(12): 16346-16372.

Peters W, Robinson BL. (1992). The chemotherapy of rodent malaria. Studies on pyronaridine and other Mannich base antimalarials. Annals of Tropical Medicine and Parasitology 86: 455–465.

Rice-Evans CA, Miller NJ, Bolwell PG, Bramley PM, Pridham JB. 1995. The relative antioxidant activities of plant-derived polyphenolic flavonoids. Free Radical Research 22(4): 375-383.

Sarr D, Cooper CA, Bracken TC, Martinez-Uribe O, Nagy T, Moore JM. (2017). Oxidative stress: A potential therapeutic target in placental malaria. Immunological Horizon 1(4): 29-41.

Sinha AK. (1972). Colorimetric assay of catalase. Analytical Biochemistry 47: 389 - 94.

Surve K, Kulkarni A, Rathod S, Bindu R. (2017). Study of haematological parameters in malaria. International Journal of Research and Medical Sciences 5(6): 2552-2557.

Tietz WW. (1990). Clinical Guide to Laboratory tests. 2nd edn. Sanders Company. Philadelphia, PA. pp. 554-556.

Uzuegbu UE, Emeka CB (2011). Changes in liver function biomarkers among malaria infected patients in Ikeja Lagos State, Nigeria. Current Research Journal of Biological Sciences 3(3): 172-174.

Van Oudtshoorn FP. (1999). Guide to Grasses of South Africa. Briza Publications, Cape Town,1999.

World Health Organisation (2020). World Malaria reports.www. who. Int/publications /m/item/WHO-HTM-GMP-2020.08



  • There are currently no refbacks.

Copyright (c) 2022 Ndanti Bartholomew William, Augustine Lawrence Bassey, John Akpan Udobang, Jude Efiom Okokon

Biology, Medicine, & Natural Product Chemistry
ISSN 2089-6514 (paper) - ISSN 2540-9328 (online)
Published by Sunan Kalijaga State Islamic University & Society for Indonesian Biodiversity.

Creative Commons License
This work is licensed under a CC BY-NC