Identification of Lactic Acid Bacteria (LAB) Consortium from Tempeh Jember Based on 16S rRNA Gene Sequences as Potential Probiotic Candidates

Siti Nur Azizah, Rosida Rosida, Rizka Yolanda Febiaocti, Dewi Riskha Nurmalasari, Sipriyadi Sipriyadi

Abstract


The development of pharmaceutical raw materials as local Indonesian probiotic concentrates requires attention to strain identity accuracy, safety, and health potential. This is due to the high potential of probiotics in preventing and addressing various health disorders from infancy to old age. Previous research successfully obtained lactic acid bacteria (LAB) isolates as probiotic candidates from tempeh produced in Jember, and preclinical testing showed that administering a consortium of five LAB isolates at a dose of 10^8 CFU/ml to BALB/c mice was an effective treatment for further application. This study aimed to perform molecular identification of the consortium of five LAB isolates from tempeh in Jember, East Java, based on 16S rRNA gene sequences. The consortium includes TA1, TB1, TK1, TK2, and TK4 isolates. This study used both qualitative descriptive and quantitative methods. Identification based on the 16S rRNA gene to determine LAB species strains involved bacterial genomic DNA isolation, amplification of the bacterial 16S rRNA gene, PCR product analysis, and phylogenetic identification and analysis. DNA amplification results showed that the consortium of five LAB isolates produced DNA fragments with bands of approximately 1300 bp. BLAST-N and phylogenetic analysis of the 16S rRNA gene showed that TB1 had 99.05% similarity with Kosakonia cowanii JCM 10956, TA1 had 99.46% similarity with Lactiplantibacillus plantarum JCM 1149, TK1 had 99.38% similarity with Lactiplantibacillus pentosus 124-2, TK2 had 96.86% similarity with Pseudomonas fluvialis ASS-1, and TK4 had 99.38% similarity with Lactiplantibacillus plantarum NBRC 15891. TA1, TB1, and TK4 were identified as non-pathogenic LAB strains, while TK1 and TK2 were not classified as LAB.

 


Keywords


Consortium; Lactic acid bacteria; Probiotics; Tempeh; 16S rRNA identification

Full Text:

PDF

References


A’inurrofiqin, M., Rahayu, E. S., Suroto, D. A., Utami, T., & Mayangsari, Y. (2022). Safety assessment of the indigenous probiotic strain Lactiplantibacillus plantarum subsp. plantarum Kita-3 using Sprague–Dawley rats as a model. AIMS Microbiology, 8(4), 403–421. https://doi.org/10.3934/microbiol.2022028

Adesulu-Dahunsi, A. T., Sanni, A. I., & Jeyaram, K. (2017). Rapid differentiation among Lactobacillus, Pediococcus and Weissella species from some Nigerian indigenous fermented foods. Lwt, 77, 39–44. https://doi.org/10.1016/j.lwt.2016.11.007

Arena, M. P., Silvain, A., Normanno, G., Grieco, F., Drider, D., Spano, G., & Fiocco, D. (2016). Use of Lactobacillus plantarum strains as a bio-control strategy against food-borne pathogenic microorganisms. Frontiers in Microbiology, 7(APR), 1–10. https://doi.org/10.3389/fmicb.2016.00464

Azizah, S. N., Rosida, Hidayah, A. N., & Dwijayanti, A. R. (2023). Lactic acid bacteria administration from Jember tempeh (Indonesia) as a probiotic candidate in intestinal physiology and histology of mice strain Balb-C. Biodiversitas, 24(12), 6969–6978. https://doi.org/10.13057/biodiv/d241258

Azizah, S.N., Eryani, M.C., & Azizah. (2021). Potential of lactic acid bacteria from tape and jember tempeh as a probiotic candidate. Jurnal Biodjati,6(2), 273-283.http://journal.uinsgd.ac.id/index.php/biodjati

Bloemendaal, M., Szopinska-Tokov, J., Belzer, C., Boverhoff, D., Papalini, S., Michels, F., van Hemert, S., Arias Vasquez, A., & Aarts, E. (2021). Probiotics- induced changes in gut microbial composition and its effects on cognitive performance after stress: exploratory analyses. Translational Psychiatry, 11(1). https://doi.org/10.1038/s41398-021-01404-9

Bonfili, L., Cecarini, V., Gogoi, O., Berardi, S., Scarpona, S., Angeletti, M., Rossi, G., & Eleuteri, A. M. (2020). Gut microbiota manipulation through probiotics oral administration restores glucose homeostasis in a mouse model of Alzheimer’s disease. Neurobiology of Aging, (87), 35–43. https://doi.org/10.1016/j.neurobiolaging.2019.11.004

Dinev, T., Beev, G., Tzanova, M., Denev, S., Dermendzhieva, D., & Stoyanova, A. (2018). Antimicrobial activity of lactobacillus plantarum against pathogenic and food spoilage microorganisms: A review. Bulgarian Journal of Veterinary Medicine, 21(3), 253–268. https://doi.org/10.15547/bjvm.1084

Elisa, & Lestari, W. (2021). Effects of Probiotics on Lipid Profiles in Hypercholesterolemia Adult Patients: an Evidence-Based Case Report. Ijcnp (Indonesian Journal of Clinical Nutrition Physician), 4(2), 118–126. https://doi.org/10.54773/ijcnp.v4i2.79

El-Sheshtawy, H. S., Fahim, I., Hosny, M., & El-Badry, M. A. (2022). Optimization of lactic acid production from agro-industrial wastes produced by Kosakonia cowanii. Current Research in Green and Sustainable Chemistry, 5(December 2021), 100228. https://doi.org/10.1016/j.crgsc.2021.100228

Espinosa González, J., Hernández Gómez, Y. F., Javier Martínez, Y., Flores Gallardo, F. J., Pacheco Aguilar, J. R., Ramos López, M. Á., Arvizu Gómez, J. L., Saldaña Gutierrez, C., Rodríguez Morales, J. A., García Gutiérrez, M. C., Amaro Reyes, A., Álvarez Hidalgo, E., Nuñez Ramírez, J., Hernández Flores, J. L., & Campos Guillén, J. (2023). Kosakonia cowanii Ch1 Isolated from Mexican Chili Powder Reveals Growth Inhibition of Phytopathogenic Fungi. Microorganisms, 11(7), 1–15. https://doi.org/10.3390/microorganisms11071758

Fallo, G., & Sine, Y. (2022). Identification of lactic acid bacteria and quality parameter of Tempeh obtained from red kidney beans (Phaseolus vulgaris) and cowpeas (Vigna unguiculata). Biogenesis: Jurnal Ilmiah Biologi, 10(1), 53–65. https://doi.org/10.24252/bio.v10i1.27349

Felsenstein. J . (1985). Confidence Limits on Phylogenies : An Approach Using the Bootstrap Author (s): Joseph Felsenstein Published by : Society for the Study of Evolution Stable URL : http://www.jstor.org/stable/2408678 Accessed : 26-05-2016 15 : 14 UTC Your use of the JSTOR. Evolution, 39(4), 783–791.

Girlich, D., Bonnin, R. A., Proust, A., Naas, T., & Dortet, L. (2021). Undetectable Production of the VIM-1 Carbapenemase in an Atlantibacter hermannii Clinical Isolate. 12(December), 1–9. https://doi.org/10.3389/fmicb.2021.741972

Goodman, C., Keating, G., Georgousopoulou, E., Hespe, C., & Levett, K. (2021). Probiotics for the prevention of antibiotic-associated diarrhoea: A systematic review and meta-analysis. In BMJ Open, 11 (8). https://doi.org/10.1136/bmjopen-2020-043054

Ilyanie, Y., Huda Faujan, N., & Ida Muryany, M. Y. (2023). Species Identification of Potential Probiotic Lactic Acid Bacteria Isolated from Malaysian Fermented Food Based on 16S Ribosomal RNA (16S rRNA) and Internal Transcribed Spacer (ITS) Sequences. Malaysian Applied Biology, 52(4), 73–84. https://doi.org/10.55230/mabjournal.v52i4.c146

Kacaribu, A. A., & Darwin. (2024). Biotechnological lactic acid production from low-cost renewable sources via anaerobic microbial processes. Biotechnologia, 105(2), 179–194. https://doi.org/10.5114/bta.2024.139757

Kamil, R. Z., Murdiati, A., Juffrie, M., & Rahayu, E. S. (2022). Gut Microbiota Modulation of Moderate Undernutrition in Infants through Gummy Lactobacillus plantarum Dad-13 Consumption: A Randomized Double-Blind Controlled Trial. Nutrients, 14(5). https://doi.org/10.3390/nu14051049

Ma, T., Shen, X., Shi, X., Sakandar, H. A., Quan, K., Li, Y., Jin, H., Kwok, L. Y., Zhang, H., & Sun, Z. (2023). Targeting gut microbiota and metabolism as the major probiotic mechanism - An evidence-based review. In Trends in Food Science and Technology, 138, 178–198.. https://doi.org/10.1016/j.tifs.2023.06.013

Mai, T. T., Thi Thu, P., Thi Hang, H., Trang, T. T. T., Yui, S., Shigehisa, A., Tien, V. T., Dung, T. V., Nga, P. B., Hung, N. T., & Tuyen, L. D. (2021). Efficacy of probiotics on digestive disorders and acute respiratory infections: a controlled clinical trial in young Vietnamese children. European Journal of Clinical Nutrition, 75(3), 513–520. https://doi.org/10.1038/s41430-020-00754-9

Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28(10), 2731–2739. https://doi.org/10.1093/molbev/msr121

Martínez Álvarez, Ó., López Caballero, M.E., Gómez Guillén, M.C. & Montero García, P. (2017). Fermented seafood products and health. In: Fermented Foods in Health and Disease Prevention. Elsevier. https://doi.org/10.1016/B978-0-12-802309-9.00009-1.

Mohammad, A. J., & Alyousif, N. A. (2022). Short Communication: Molecular identification and assessment of bacterial contamination of frozen local and imported meat and chicken in Basrah, Iraq using 16S rDNA gene. Biodiversitas, 23(3), 1598–1604. https://doi.org/10.13057/biodiv/d230350

Muryany, I. M.Y. 2017. Pengenalpastian dan Pencirian Probiotik Novel dari Sumber Ikan Terfermentasi Serta Fungsinya dalam Inflamasi. (Ph.D). Universiti Kebangsaan Malaysia, Malaysia.

Pramudito, T. E., Desai, K., Voigt, C., Smid, E. J., & Schols, H. A. (2024). Dextran and levan exopolysaccharides from tempeh-associated lactic acid bacteria with bioactivity against enterotoxigenic Escherichia coli (ETEC). Carbohydrate Polymers, 328. https://doi.org/10.1016/j.carbpol.2023.121700

Pramudito, T. E., Desai, K., Voigt, C., Smid, E. J., & Schols, H. A. (2024). Dextran and levan exopolysaccharides from tempeh-associated lactic acid bacteria with bioactivity against enterotoxigenic Escherichia coli (ETEC). Carbohydrate Polymers, 328. https://doi.org/10.1016/j.carbpol.2023.121700

Ratna, D. K., Evita, M. M., Rahayu, E. S., Cahyanto, M. N., Wikandari, R., & Utami, T. (2021). Indigenous lactic acid Bacteria from halloumi cheese as a probiotics candidate of Indonesian origin. International Journal of Probiotics and Prebiotics, 16(1), 39–44. https://doi.org/10.37290/ijpp2641-7197.16:39-44

Rosahdi, T. D., Tafiani, N., & Hafsari, A. R. (2018). Identifikasi Spesies Isolat Bakteri K2Br5 dari Tanah Karst dengan Sistem Kekerabatan Melalui Analisis Urutan Nukleotida Gen 16S rRNA. al-Kimiya, 5(2), 84–88. https://doi.org/10.15575/ak.v5i2.3836.

Salatein, N. M., Hassan, R. K., Ibrahim, R. A., Desouky, S. E., El-Belely, E. F., Abdel-Rahman, M. A., & Fahim, I. S. (2025). Sustainable lactic acid production: Optimization yield from sugarcane and beet molasses through fermentation. Results in Engineering, 26(February), 105161. https://doi.org/10.1016/j.rineng.2025.105161

Sambrook J, Russell DW. 2001. Molecular Cloning a Laboratory Manual. 3rd ed. New York. Cold Spring Harbor Laboratory Pr.

Sanchez-Rodriguez, A., Idrovo, I. I. D., Villafranca, R., Latorre, N., Rielo, J. A., Laburu, A., Nieto-Román, S., Heredia, D., González, R., García-Cañas, V., Laxalde, D., Simó, C., Vieites, D. R., & Roldan, E. R. S. (2024). Effect of Probiotics on Sperm Quality in the Adult Mouse. Probiotics and Antimicrobial Proteins.

https://doi.org/10.1007/s12602-024-10388-z

Sudan, S. K., Pal, D., Bisht, B., Kumar, N., Chaudhry, V., Patil, P., Sahni, G., Mayilraj, S., & Krishnamurthi, S. (2018). Pseudomonas fluvialis sp. nov., a novel member of the genus Pseudomonas isolated from the river Ganges, India. International Journal of Systematic and Evolutionary Microbiology, 68(1), 402–408. https://doi.org/10.1099/ijsem.0.002520

T.S. Kemgang, S. K. V. P. S. R. K. (2014). Cross?talk between probiotic lactobacilli and host immune system. . Journal of Applied Microbiology, 117(2), 303–319. https://doi.org/10.1111/jam.12521

Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28(10), 2731–2739. https://doi.org/10.1093/molbev/msr121

Tian, J., Huang, L., Tian, R., Wu, J., Tang, R., & Zhang, J. (2023). Fermentation quality and bacterial community of delayed filling stylo silage in response to inoculating lactic acid bacteria strains and inoculating time. Chemical and Biological Technologies in Agriculture, 10(1), 1–13. https://doi.org/10.1186/s40538-023-00423-6




DOI: https://doi.org/10.14421/biomedich.2025.142.1339-1346

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 Siti Nur Azizah, Rosida, Rizka Yolanda Febiaocti, Dewi Riskha Nurmalasari, Sipriyadi



Biology, Medicine, & Natural Product Chemistry
ISSN 2089-6514 (paper) - ISSN 2540-9328 (online)
Published by Sunan Kalijaga State Islamic University & Society for Indonesian Biodiversity.

CC BY NC
This work is licensed under a CC BY-NC